1,安装 PostgreSQL
i,Mac OS 上安装 PostgreSQL
请参考下面链接中的文章:
https://www.runoob.com/postgresql/mac-install-postgresql.html
ii,Windows 上安装 PostgreSQL
请参考下面链接中的文章:
https://www.runoob.com/postgresql/windows-install-postgresql.html
iii,Linux 上安装 PostgreSQL
请参考下面链接中的文章:
https://www.runoob.com/postgresql/linux-install-postgresql.html
2,PostgreSQL 创建数据库
CREATE DATABASE 创建数据库
CREATE DATABASE 命令需要在 PostgreSQL 命令窗口来执行,语法格式如下:
CREATE DATABASE dbname;
例如,我们创建一个 runoobdb 的数据库:
postgres=# CREATE DATABASE runoobdb;
3,PostgreSQL 选择数据库
数据库的命令窗口
PostgreSQL 命令窗口中,我们可以命令提示符后面输入 SQL 语句:
postgres=#
使用 \l 用于查看已经存在的数据库:
postgres=# \l
List of databases
Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------+----------+----------+---------+-------+-----------------------
postgres | postgres | UTF8 | C | C |
runoobdb | postgres | UTF8 | C | C |
template0 | postgres | UTF8 | C | C | =c/postgres +
| | | | | postgres=CTc/postgres
template1 | postgres | UTF8 | C | C | =c/postgres +
| | | | | postgres=CTc/postgres
接下来我们可以使用 \c + 数据库名 来进入数据库 :
postgres=# \c runoobdb
You are now connected to database "runoobdb" as user "postgres".
runoobdb=#
4,PostgreSQL 删除数据库
DROP DATABASE 删除数据库
DROP DATABASE 会删除数据库的系统目录项并且删除包含数据的文件目录。
DROP DATABASE 只能由超级管理员或数据库拥有者执行。
DROP DATABASE 命令需要在 PostgreSQL 命令窗口来执行,语法格式如下:
DROP DATABASE [ IF EXISTS ] name
参数说明:
- IF EXISTS:如果数据库不存在则发出提示信息,而不是错误信息。
- name:要删除的数据库的名称。
例如,我们删除一个 runoobdb 的数据库:
postgres=# DROP DATABASE runoobdb;
此时,可能会有个错误报出来,如下所示:
ERROR: database "runoobdb" is being accessed by other users
DETAIL: There is 1 other session using the database.
这是因为当前数据库也在被别的用户使用,这里要删除也要慎重,确保数据库是可以被删除的再继续操作。
解决方式:
断开连接到这个数据库上的所有链接,再删除数据库。怎么断开呢?在PostgreSQL 9.2 及以上版本,执行下面的语句:
SELECT pg_terminate_backend(pg_stat_activity.pid)
FROM pg_stat_activity
WHERE datname='mydb' AND pid<>pg_backend_pid();
再执行
postgres=# DROP DATABASE runoobdb;
删除成功
语句说明:
- pg_terminate_backend:用来终止与数据库的连接的进程id的函数。
- pg_stat_activity:是一个系统表,用于存储服务进程的属性和状态。
- pg_backend_pid():是一个系统函数,获取附加到当前会话的服务器进程的ID。
5,PostgreSQL 创建表格
PostgreSQL 使用 CREATE TABLE 语句来创建数据库表格。
语法
CREATE TABLE 语法格式如下:
CREATE TABLE table_name(
column1 datatype,
column2 datatype,
column3 datatype,
.....
columnN datatype,
PRIMARY KEY( 一个或多个列 )
);
CREATE TABLE 是一个关键词,用于告诉数据库系统将创建一个数据表。
表名字必需在同一模式中的其它表、 序列、索引、视图或外部表名字中唯一。
CREATE TABLE 在当前数据库创建一个新的空白表,该表将由发出此命令的用户所拥有。
表格中的每个字段都会定义数据类型,如下:
实例
以下创建了一个表,表名为 COMPANY 表格,主键为 ID,NOT NULL 表示字段不允许包含 NULL 值:
CREATE TABLE COMPANY(
ID INT PRIMARY KEY NOT NULL,
NAME TEXT NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR(50),
SALARY REAL
);
接下来我们再创建一个表格,在后面章节会用到:
CREATE TABLE DEPARTMENT(
ID INT PRIMARY KEY NOT NULL,
DEPT CHAR(50) NOT NULL,
EMP_ID INT NOT NULL
);
\d tablename 查看表格信息:
runoobdb=# \d company
Table "public.company"
Column | Type | Collation | Nullable | Default
---------+---------------+-----------+----------+---------
id | integer | | not null |
name | text | | not null |
age | integer | | not null |
address | character(50) | | |
salary | real | | |
Indexes:
"company_pkey" PRIMARY KEY, btree (id)
runoobdb=# \d department
Table "public.department"
Column | Type | Collation | Nullable | Default
--------+---------------+-----------+----------+---------
id | integer | | not null |
dept | character(50) | | not null |
emp_id | integer | | not null |
Indexes:
"department_pkey" PRIMARY KEY, btree (id)
6,PostgreSQL 删除表格
PostgreSQL 使用 DROP TABLE 语句来删除表格,包含表格数据、规则、触发器等,所以删除表格要慎重,删除后所有信息就消失了。
语法
DROP TABLE 语法格式如下:
DROP TABLE table_name;
删除上节中已创建的两个表格 :
runoobdb=# drop table department, company;
DROP TABLE
再使用 \d 命令来查看就找不到表格了:
runoobdb=# \d
Did not find any relations.
7,PostgreSQL 模式(SCHEMA)
PostgreSQL 模式(SCHEMA)可以看着是一个表的集合。
一个模式可以包含视图、索引、据类型、函数和操作符等。
相同的对象名称可以被用于不同的模式中而不会出现冲突,例如 schema1 和 myschema 都可以包含名为 mytable 的表。
使用模式的优势:
-
允许多个用户使用一个数据库并且不会互相干扰。
-
将数据库对象组织成逻辑组以便更容易管理。
-
第三方应用的对象可以放在独立的模式中,这样它们就不会与其他对象的名称发生冲突。
模式类似于操作系统层的目录,但是模式不能嵌套。
语法
我们可以使用 CREATE SCHEMA 语句来创建模式,语法格式如下:
CREATE TABLE myschema.mytable (
...
);
实例
接下来我们连接到 runoobdb 来创建模式 myschema:
runoobdb=# create schema myschema;
CREATE SCHEMA
输出结果 "CREATE SCHEMA" 就代表模式创建成功。
接下来我们再创建一个表格:
runoobdb=# create table myschema.company(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)
);
以上命令创建了一个空的表格,我们使用以下 SQL 来查看表格是否创建:
runoobdb=# select * from myschema.company;
id | name | age | address | salary
----+------+-----+---------+--------
(0 rows)
删除模式
删除一个为空的模式(其中的所有对象已经被删除):
DROP SCHEMA myschema;
删除一个模式以及其中包含的所有对象:
DROP SCHEMA myschema CASCADE;
再验证一下该命令是否执行成功了。
runoobdb=# DROP SCHEMA myschema;
ERROR: cannot drop schema myschema because other objects depend on it
DETAIL: table myschema.company depends on schema myschema
HINT: Use DROP ... CASCADE to drop the dependent objects too.
runoobdb=# DROP SCHEMA myschema CASCADE;
NOTICE: drop cascades to table myschema.company
DROP SCHEMA
runoobdb=# select * from myschema.company;
ERROR: relation "myschema.company" does not exist
LINE 1: select * from myschema.company;
^
runoobdb=#
8,PostgreSQL INSERT INTO 语句
PostgreSQL INSERT INTO 语句用于向表中插入新记录。
我们可以插入一行也可以同时插入多行。
语法
INSERT INTO 语句语法格式如下:
INSERT INTO TABLE_NAME (column1, column2, column3,...columnN)
VALUES (value1, value2, value3,...valueN);
-
column1, column2,...columnN 为表中字段名。
-
value1, value2, value3,...valueN 为字段对应的值。
在使用 INSERT INTO 语句时,字段列必须和数据值数量相同,且顺序也要对应。
如果我们向表中的所有字段插入值,则可以不需要指定字段,只需要指定插入的值即可:
INSERT INTO TABLE_NAME VALUES (value1,value2,value3,...valueN);
下表列出执行插入后返回结果的说明:
序号 | 输出信息 & 描述 |
---|---|
1 | INSERT oid 1 只插入一行并且目标表具有 OID的返回信息, 那么 oid 是分配给被插入行的 OID。 |
2 | INSERT 0 # 插入多行返回的信息, # 为插入的行数。 |
实例
在 runoobdb 数据库中创建 COMPANY 表:
runoobdb=# CREATE TABLE COMPANY(
ID INT PRIMARY KEY NOT NULL,
NAME TEXT NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR(50),
SALARY REAL,
JOIN_DATE DATE
);
输入\d确认表是否新建成功。
runoobdb=# \d
List of relations
Schema | Name | Type | Owner
--------+---------+-------+----------
public | company | table | postgres
(1 row)
在 COMPANY 表中插入以下数据:
runoobdb=# INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY,JOIN_DATE) VALUES (1, 'Paul', 32, 'California', 20000.00,'2001-07-13');
INSERT 0 1
以下插入语句忽略 SALARY 字段:
runoobdb=# INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,JOIN_DATE) VALUES (2, 'Allen', 25, 'Texas', '2007-12-13');
INSERT 0 1
以下插入语句 JOIN_DATE 字段使用 DEFAULT 子句来设置默认值,而不是指定值:
runoobdb=# INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY,JOIN_DATE) VALUES (3, 'Teddy', 23, 'Norway', 20000.00, DEFAULT );
INSERT 0 1
以下实例插入多行:
runoobdb=# INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY,JOIN_DATE) VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00, '2007-12-13' ), (5, 'David', 27, 'Texas', 85000.00, '2007-12-13');
INSERT 0 2
使用 SELECT 语句查询表格数据:
runoobdb=# SELECT * FROM company;
ID NAME AGE ADDRESS SALARY JOIN_DATE
---- ---------- ----- ---------- ------- --------
1 Paul 32 California 20000.0 2001-07-13
2 Allen 25 Texas 2007-12-13
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0 2007-12-13
5 David 27 Texas 85000.0 2007-12-13
9,PostgreSQL SELECT 语句
PostgreSQL SELECT 语句用于从数据库中选取数据。
结果被存储在一个结果表中,称为结果集。
语法
SELECT 语句语法格式如下:
SELECT column1, column2,...columnN FROM table_name;
-
column1, column2,...columnN 为表中字段名。
-
table_name 为表名。
如果我们想读取表中的所有数据可以使用以下 SQL 语句:
SELECT * FROM table_name;
在上一节 INSERT INTO 语句 中,已经向表 company 插入了一些数据,使用 * 号可以读取该表的所有数据:
runoobdb=# SELECT * FROM company;
ID NAME AGE ADDRESS SALARY JOIN_DATE
---- ---------- ----- ---------- ------- --------
1 Paul 32 California 20000.0 2001-07-13
2 Allen 25 Texas 2007-12-13
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0 2007-12-13
5 David 27 Texas 85000.0 2007-12-13
也可以读取指定字段 ID 和 NAME:
runoobdb=# SELECT ID,NAME FROM company;
id | name
----+-------
1 | Paul
2 | Allen
3 | Teddy
4 | Mark
5 | David
(5 rows)
10,PostgreSQL 运算符
运算符是一种告诉编译器执行特定的数学或逻辑操作的符号。
PostgreSQL 运算符是一个保留关键字或字符,一般用在 WHERE 语句中,作为过滤条件。
常见的运算符有:
- 算术运算符
- 比较运算符
- 逻辑运算符
- 按位运算符
算术运算符
假设变量 a 为 2,变量 b 为 3,则:
运算符 | 描述 | 实例 |
---|---|---|
+ | 加 | a + b 结果为 5 |
- | 减 | a - b 结果为 -1 |
* | 乘 | a * b 结果为 6 |
/ | 除 | b / a 结果为 1 |
% | 模(取余) | b % a 结果为 1 |
^ | 指数 | a ^ b 结果为 8 |
|/ | 平方根 | |/ 25.0 结果为 5 |
||/ | 立方根 | ||/ 27.0 结果为 3 |
! | 阶乘 | 5 ! 结果为 120 |
!! | 阶乘(前缀操作符) | !! 5 结果为 120 |
实例
runoobdb=# select 2+3;
?column?
----------
5
(1 row)
runoobdb=# select 2*3;
?column?
----------
6
(1 row)
runoobdb=# select 10/5;
?column?
----------
2
(1 row)
runoobdb=# select 10%5;
?column?
----------
0
(1 row)
runoobdb=# select 2^3;
?column?
----------
8
(1 row)
runoobdb=# select |/ 25.0;
?column?
----------
5
(1 row)
runoobdb=# select ||/ 27.0;
?column?
----------
3
(1 row)
runoobdb=# select 5 !;
?column?
----------
120
(1 row)
runoobdb=# select !! 5;
?column?
----------
120
(1 row)
比较运算符
假设变量 a 为 10,变量 b 为 20,则:
运算符 | 描述 | 实例 |
---|---|---|
= | 等于 | (a = b) 为 false。 |
!= | 不等于 | (a != b) 为 true。 |
<> | 不等于 | (a <> b) 为 true。 |
> | 大于 | (a > b) 为 false。 |
< | 小于 | (a < b) 为 true。 |
>= | 大于等于 | (a >= b) 为 false。 |
<= | 小于等于 | (a <= b) 为 true。 |
实例
创建 COMPANY 表,数据内容如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
2 | Allen | 25 | Texas | 15000 | 2007-12-13
3 | Teddy | 23 | Norway | 20000 | 2019-06-26
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
6 | Kim | 22 | South-Hall | 45000 | 2016-01-01
7 | James | 24 | Houston | 10000 | 2015-05-01
读取 SALARY 字段大于 50000 的数据:
runoobdb=# select * from company where salary > 50000;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
(2 rows)
读取 SALARY 字段等于 20000 的数据:
runoobdb=# select * from company where salary = 20000;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
3 | Teddy | 23 | Norway | 20000 | 2019-06-26
(2 rows)
读取 SALARY 字段不等于 20000 的数据:
runoobdb=# select * from company where salary != 20000;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
2 | Allen | 25 | Texas | 15000 | 2007-12-13
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
6 | Kim | 22 | South-Hall | 45000 | 2016-01-01
7 | James | 24 | Houston | 10000 | 2015-05-01
(5 rows)
runoobdb=# select * from company where salary <> 20000;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
2 | Allen | 25 | Texas | 15000 | 2007-12-13
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
6 | Kim | 22 | South-Hall | 45000 | 2016-01-01
7 | James | 24 | Houston | 10000 | 2015-05-01
(5 rows)
读取 SALARY 字段大于等于 65000 的数据:
runoobdb=# select * from company where salary >= 65000;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
(2 rows)
逻辑运算符
PostgreSQL 逻辑运算符有以下几种:
序号 | 运算符 & 描述 |
---|---|
1 | AND 逻辑与运算符。如果两个操作数都非零,则条件为真。 PostgresSQL 中的 WHERE 语句可以用 AND 包含多个过滤条件。 |
2 | NOT 逻辑非运算符。用来逆转操作数的逻辑状态。如果条件为真则逻辑非运算符将使其为假。 PostgresSQL 有 NOT EXISTS, NOT BETWEEN, NOT IN 等运算符。
|
3 | OR 逻辑或运算符。如果两个操作数中有任意一个非零,则条件为真。 PostgresSQL 中的 WHERE 语句可以用 OR 包含多个过滤条件。 |
SQL 使用三值的逻辑系统,包括 true、false 和 null,null 表示"未知"。
a | b | a AND b | a OR b |
---|---|---|---|
TRUE | TRUE | TRUE | TRUE |
TRUE | FALSE | FALSE | TRUE |
TRUE | NULL | NULL | TRUE |
FALSE | FALSE | FALSE | FALSE |
FALSE | NULL | FALSE | NULL |
NULL | NULL | NULL | NULL |
a | NOT a |
---|---|
TRUE | FALSE |
FALSE | TRUE |
NULL | NULL |
创建 COMPANY 表,数据内容如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
2 | Allen | 25 | Texas | 15000 | 2007-12-13
3 | Teddy | 23 | Norway | 20000 | 2019-06-26
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
6 | Kim | 22 | South-Hall | 45000 | 2016-01-01
7 | James | 24 | Houston | 10000 | 2015-05-01
(7 rows)
读取 AGE 字段大于等于 25 且 SALARY 字段大于 6500 的数据:
runoobdb=# select * from company where age >= 25 and salary > 6500;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
2 | Allen | 25 | Texas | 15000 | 2007-12-13
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
(4 rows)
读取 AGE 字段大于等于 25 或 SALARY 字段大于 6500 的数据:
runoobdb=# select * from company where age >= 25 or salary > 6500;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
2 | Allen | 25 | Texas | 15000 | 2007-12-13
3 | Teddy | 23 | Norway | 20000 | 2019-06-26
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
6 | Kim | 22 | South-Hall | 45000 | 2016-01-01
7 | James | 24 | Houston | 10000 | 2015-05-01
(7 rows)
读取 SALARY 字段不为 NULL 的数据:
runoobdb=# select * from company where salary is not null;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
2 | Allen | 25 | Texas | 15000 | 2007-12-13
3 | Teddy | 23 | Norway | 20000 | 2019-06-26
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
6 | Kim | 22 | South-Hall | 45000 | 2016-01-01
7 | James | 24 | Houston | 10000 | 2015-05-01
(7 rows)
位运算符
位运算符作用于位,并逐位执行操作。&、 | 和 ^ 的真值表如下所示:
p | q | p & q | p | q |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
1 | 0 | 0 | 1 |
假设如果 A = 60,且 B = 13,现在以二进制格式表示,它们如下所示:
A = 0011 1100
B = 0000 1101
-----------------
A&B = 0000 1100
A|B = 0011 1101
A^B = 0011 0001
~A = 1100 0011
下表显示了 PostgreSQL 支持的位运算符。假设变量 A 的值为 60,变量 B 的值为 13,则:
运算符 | 描述 | 实例 |
---|---|---|
& | 按位与操作,按二进制位进行"与"运算。运算规则: 0&0=0; 0&1=0; 1&0=0; 1&1=1; | (A & B) 将得到 12,即为 0000 1100 |
| | 按位或运算符,按二进制位进行"或"运算。运算规则: 0|0=0; 0|1=1; 1|0=1; 1|1=1; | (A | B) 将得到 61,即为 0011 1101 |
# | 异或运算符,按二进制位进行"异或"运算。运算规则: 0#0=0; 0#1=1; 1#0=1; 1#1=0; | (A # B) 将得到 49,即为 0011 0001 |
~ | 取反运算符,按二进制位进行"取反"运算。运算规则: ~1=0; ~0=1; | (~A ) 将得到 -61,即为 1100 0011,一个有符号二进制数的补码形式。 |
<< | 二进制左移运算符。将一个运算对象的各二进制位全部左移若干位(左边的二进制位丢弃,右边补0)。 | A << 2 将得到 240,即为 1111 0000 |
>> | 二进制右移运算符。将一个数的各二进制位全部右移若干位,正数左补0,负数左补1,右边丢弃。 | A >> 2 将得到 15,即为 0000 1111 |
实例
runoobdb=# select 60 | 13;
?column?
----------
61
(1 row)
runoobdb=# select 60 & 13;
?column?
----------
12
(1 row)
runoobdb=# select (~60);
?column?
----------
-61
(1 row)
runoobdb=# select (60 << 2);
?column?
----------
240
(1 row)
runoobdb=# select (60 >> 2);
?column?
----------
15
(1 row)
runoobdb=# select 60 # 13;
?column?
----------
49
(1 row)
11,PostgreSQL 表达式
表达式是由一个或多个的值、运算符、PostgresSQL 函数组成的。
PostgreSQL 表达式类似一个公式,我们可以将其应用在查询语句中,用来查找数据库中指定条件的结果集。
语法
SELECT 语句的语法格式如下:
SELECT column1, column2, columnN
FROM table_name
WHERE [CONDITION | EXPRESSION];
PostgreSQL 的表达式可以有不同类型,我们接下来会讲到。
布尔表达式
布尔表达式是根据一个指定条件来读取数据:
SELECT column1, column2, columnN
FROM table_name
WHERE SINGLE VALUE MATCHTING EXPRESSION;
创建 COMPANY 表,数据内容如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
2 | Allen | 25 | Texas | 15000 | 2007-12-13
3 | Teddy | 23 | Norway | 20000 | 2019-06-26
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
6 | Kim | 22 | South-Hall | 45000 | 2016-01-01
7 | James | 24 | Houston | 10000 | 2015-05-01
(7 rows)
以下使用了布尔表达式(SALARY=10000)来查询数据:
runoobdb=# select * from company where salary = 10000;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
7 | James | 24 | Houston | 10000 | 2015-05-01
(1 row)
数字表达式
数字表达式常用于查询语句中的数学运算:
SELECT numerical_expression as OPERATION_NAME
[FROM table_name WHERE CONDITION] ;
numerical_expression 是一个数学运算表达式,实例如下:
runoobdb=# select (17 + 6) as ADDITION;
addition
----------
23
(1 row)
此外 PostgreSQL 还内置了一些数学函数,如:
- avg() : 返回一个表达式的平均值
- sum() : 返回指定字段的总和
- count() : 返回查询的记录总数
以下实例查询 COMPANY 表的记录总数:
runoobdb=# select count(*) as "RECORDS" from company;
RECORDS
---------
7
(1 row)
日期表达式
日期表达式返回当前系统的日期和时间,可用于各种数据操作,以下实例查询当前时间:
runoobdb=# select current_timestamp;
current_timestamp
-------------------------------
2020-04-25 09:06:52.101221+08
(1 row)
12,PostgreSQL WHERE 子句
在 PostgreSQL 中,当我们需要根据指定条件从单张表或者多张表中查询数据时,就可以在 SELECT 语句中添加 WHERE 子句,从而过滤掉我们不需要数据。
WHERE 子句不仅可以用于 SELECT 语句中,同时也可以用于 UPDATE,DELETE 等等语句中。
语法
以下是 SELECT 语句中使用 WHERE 子句从数据库中读取数据的通用语法:
SELECT column1, column2, columnN
FROM table_name
WHERE [condition1]
我们可以在 WHERE 子句中使用比较运算符或逻辑运算符,例如 >, <, =, LIKE, NOT 等等。
创建 COMPANY 表,数据内容如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
2 | Allen | 25 | Texas | 15000 | 2007-12-13
3 | Teddy | 23 | Norway | 20000 | 2019-06-26
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
6 | Kim | 22 | South-Hall | 45000 | 2016-01-01
7 | James | 24 | Houston | 10000 | 2015-05-01
(7 rows)
以下几个实例我们使用逻辑运算符来读取表中的数据。
AND
找出 AGE(年龄) 字段大于等于 25,并且 SALARY(薪资) 字段大于等于 65000 的数据:
runoobdb=# select * from company where age >= 25 and salary >= 65000;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
(2 rows)
OR
找出 AGE(年龄) 字段大于等于 25,或者 SALARY(薪资) 字段大于等于 65000 的数据:
runoobdb=# select * from company where age >= 25 or salary >= 65000;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
2 | Allen | 25 | Texas | 15000 | 2007-12-13
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
(4 rows)
NOT NULL
在公司表中找出 AGE(年龄) 字段不为空的记录:
runoobdb=# select * from company where age is not null;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
2 | Allen | 25 | Texas | 15000 | 2007-12-13
3 | Teddy | 23 | Norway | 20000 | 2019-06-26
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
6 | Kim | 22 | South-Hall | 45000 | 2016-01-01
7 | James | 24 | Houston | 10000 | 2015-05-01
(7 rows)
LIKE
在 COMPANY 表中找出 NAME(名字) 字段中以 Pa 开头的的数据:
runoobdb=# select * from company where name like 'Pa%';
id | name | age | address | salary | join_date
----+------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
(1 row)
IN
以下 SELECT 语句列出了 AGE(年龄) 字段为 25 或 27 的数据:
runoobdb=# select * from company where age in (25, 27);
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
2 | Allen | 25 | Texas | 15000 | 2007-12-13
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
(3 rows)
NOT IN
以下 SELECT 语句列出了 AGE(年龄) 字段不为 25 或 27 的数据:
runoobdb=# select * from company where age not in (25, 27);
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
3 | Teddy | 23 | Norway | 20000 | 2019-06-26
6 | Kim | 22 | South-Hall | 45000 | 2016-01-01
7 | James | 24 | Houston | 10000 | 2015-05-01
(4 rows)
BETWEEN
以下 SELECT 语句列出了 AGE(年龄) 字段在 25 到 27 的数据:
runoobdb=# select * from company where age between 25 and 27;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
2 | Allen | 25 | Texas | 15000 | 2007-12-13
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
(3 rows)
子查询
以下的 SELECT 语句使用了 SQL 的子查询,子查询语句中读取 SALARY(薪资) 字段大于 65000 的数据,然后通过 EXISTS 运算符判断它是否返回行,如果有返回行则读取所有的 AGE(年龄) 字段。
runoobdb=# select age from company where exists (select age from company where salary > 65000);
age
-----
32
25
23
25
27
22
24
(7 rows)
以下的 SELECT 语句同样使用了 SQL 的子查询,子查询语句中读取 SALARY(薪资) 字段大于 65000 的 AGE(年龄) 字段数据,然后用 > 运算符查询大于该 AGE(年龄) 字段数据:
runoobdb=# select * from company where age > (select age from company where salary > 65000);
id | name | age | address | salary | join_date
----+------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
(1 row)
13,PostgreSQL UPDATE 语句
如果我们要更新在 PostgreSQL 数据库中的数据,我们可以用 UPDATE 来操作。
语法
以下是 UPDATE 语句修改数据的通用 SQL 语法:
UPDATE table_name
SET column1 = value1, column2 = value2...., columnN = valueN
WHERE [condition];
- 我们可以同时更新一个或者多个字段。
- 我们可以在 WHERE 子句中指定任何条件。
实例
创建 COMPANY 表,数据内容如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
2 | Allen | 25 | Texas | 15000 | 2007-12-13
3 | Teddy | 23 | Norway | 20000 | 2019-06-26
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
6 | Kim | 22 | South-Hall | 45000 | 2016-01-01
7 | James | 24 | Houston | 10000 | 2015-05-01
(7 rows)
以下实例将更新 COMPANY 表中 id 为 3 的 salary 字段值,并得到结果如下:
runoobdb=# update company set salary = 18000 where id = 3;
UPDATE 1
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
2 | Allen | 25 | Texas | 15000 | 2007-12-13
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
6 | Kim | 22 | South-Hall | 45000 | 2016-01-01
7 | James | 24 | Houston | 10000 | 2015-05-01
3 | Teddy | 23 | Norway | 18000 | 2019-06-26
(7 rows)
从结果上看,COMPANY 表中的 id 为 3 的 salary 字段值已被修改。
以下实例将同时更新 salary 字段和 address 字段的值:
runoobdb=# UPDATE COMPANY SET ADDRESS = 'Texas', SALARY=20000;
得到结果如下:
id | name | age | address | salary
----+-------+-----+---------+--------
1 | Paul | 32 | Texas | 20000
2 | Allen | 25 | Texas | 20000
4 | Mark | 25 | Texas | 20000
5 | David | 27 | Texas | 20000
6 | Kim | 22 | Texas | 20000
7 | James | 24 | Texas | 20000
3 | Teddy | 23 | Texas | 20000
(7 rows)
14,PostgreSQL DELETE 语句
你可以使用 DELETE 语句来删除 PostgreSQL 表中的数据。
语法
以下是 DELETE 语句删除数据的通用语法:
DELETE FROM table_name WHERE [condition];
如果没有指定 WHERE 子句,PostgreSQL 表中的所有记录将被删除。
一般我们需要在 WHERE 子句中指定条件来删除对应的记录,条件语句可以使用 AND 或 OR 运算符来指定一个或多个。
实例
创建 COMPANY 表,数据内容如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
2 | Allen | 25 | Texas | 15000 | 2007-12-13
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
6 | Kim | 22 | South-Hall | 45000 | 2016-01-01
7 | James | 24 | Houston | 10000 | 2015-05-01
3 | Teddy | 23 | Norway | 18000 | 2019-06-26
(7 rows)
以下 SQL 语句将删除 ID 为 2 的数据:
runoobdb=# delete from company where id = 2;
DELETE 1
得到结果如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2001-07-13
4 | Mark | 25 | Rich-Mond | 65000 | 2018-09-29
5 | David | 27 | Texas | 85000 | 2017-10-01
6 | Kim | 22 | South-Hall | 45000 | 2016-01-01
7 | James | 24 | Houston | 10000 | 2015-05-01
3 | Teddy | 23 | Norway | 18000 | 2019-06-26
(6 rows)
从上面结果可以看出,id 为 2 的数据已被删除。
以下语句将删除整张 COMPANY 表:
DELETE FROM COMPANY;
15,PostgreSQL LIKE 子句
在 PostgreSQL 数据库中,我们如果要获取包含某些字符的数据,可以使用 LIKE 子句。
在 LIKE 子句中,通常与通配符结合使用,通配符表示任意字符,在 PostgreSQL 中,主要有以下两种通配符:
- 百分号 %
- 下划线 _
如果没有使用以上两种通配符,LIKE 子句和等号 = 得到的结果是一样的。
语法
以下是使用 LIKE 子句搭配百分号 % 和下划线 _ 从数据库中获取数据的通用语法:
SELECT FROM table_name WHERE column LIKE 'XXXX%';
或者
SELECT FROM table_name WHERE column LIKE '%XXXX%';
或者
SELECT FROM table_name WHERE column LIKE 'XXXX_';
或者
SELECT FROM table_name WHERE column LIKE '_XXXX';
或者
SELECT FROM table_name WHERE column LIKE '_XXXX_';
你可以在 WHERE 子句中指定任何条件。
你可以使用 AND 或者 OR 指定一个或多个条件。
XXXX 可以是任何数字或者字符。
实例
下面是 LIKE 语句中演示了 % 和 _ 的一些差别:
实例 | 描述 |
---|---|
WHERE SALARY::text LIKE '200%' | 找出 SALARY 字段中以 200 开头的数据。 |
WHERE SALARY::text LIKE '%200%' | 找出 SALARY 字段中含有 200 字符的数据。 |
WHERE SALARY::text LIKE '_00%' | 找出 SALARY 字段中在第二和第三个位置上有 00 的数据。 |
WHERE SALARY::text LIKE '2 % %' | 找出 SALARY 字段中以 2 开头的字符长度大于 3 的数据。 |
WHERE SALARY::text LIKE '%2' | 找出 SALARY 字段中以 2 结尾的数据 |
WHERE SALARY::text LIKE '_2%3' | 找出 SALARY 字段中 2 在第二个位置上并且以 3 结尾的数据 |
WHERE SALARY::text LIKE '2___3' | 找出 SALARY 字段中以 2 开头,3 结尾并且是 5 位数的数据 |
在 PostgreSQL 中,LIKE 子句是只能用于对字符进行比较,因此在上面列子中,我们要将整型数据类型转化为字符串数据类型。
创建 COMPANY 表,数据内容如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2014-01-01
2 | Allen | 25 | Texas | 27500 | 2015-02-18
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
4 | Mark | 25 | Rich-Mond | 65000 | 2017-04-26
5 | David | 27 | Texas | 85000 | 2018-04-06
6 | Kim | 22 | South-Hall | 45000 | 2019-09-12
7 | James | 24 | Houston | 10000 | 2020-02-12
下面实例将找出 AGE 以 2 开头的数据:
runoobdb=# select * from company where age::text like '2%';
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
2 | Allen | 25 | Texas | 27500 | 2015-02-18
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
4 | Mark | 25 | Rich-Mond | 65000 | 2017-04-26
5 | David | 27 | Texas | 85000 | 2018-04-06
6 | Kim | 22 | South-Hall | 45000 | 2019-09-12
7 | James | 24 | Houston | 10000 | 2020-02-12
(6 rows)
下面实例将找出 address 字段中含有 - 字符的数据:
runoobdb=# select * from company where address like '%-%'; id | name | age | address | salary | join_date
----+------+-----+----------------------------------------------------+--------+------------
4 | Mark | 25 | Rich-Mond | 65000 | 2017-04-26
6 | Kim | 22 | South-Hall | 45000 | 2019-09-12
(2 rows)
16,PostgreSQL LIMIT 子句
PostgreSQL 中的 limit 子句用于限制 SELECT 语句中查询的数据的数量。
语法
带有 LIMIT 子句的 SELECT 语句的基本语法如下:
SELECT column1, column2, columnN
FROM table_name
LIMIT [no of rows]
下面是 LIMIT 子句与 OFFSET 子句一起使用时的语法:
SELECT column1, column2, columnN
FROM table_name
LIMIT [no of rows] OFFSET [row num]
实例
创建 COMPANY 表,数据内容如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2014-01-01
2 | Allen | 25 | Texas | 27500 | 2015-02-18
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
4 | Mark | 25 | Rich-Mond | 65000 | 2017-04-26
5 | David | 27 | Texas | 85000 | 2018-04-06
6 | Kim | 22 | South-Hall | 45000 | 2019-09-12
7 | James | 24 | Houston | 10000 | 2020-02-12
(7 rows)
下面实例将找出限定的数量的数据,即读取 4 条数据:
runoobdb=# select * from company limit 4;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2014-01-01
2 | Allen | 25 | Texas | 27500 | 2015-02-18
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
4 | Mark | 25 | Rich-Mond | 65000 | 2017-04-26
(4 rows)
但是,在某些情况下,可能需要从一个特定的偏移开始提取记录。
下面是一个实例,从第三位开始提取 3 个记录:
runoobdb=# select * from company limit 4 offset 2;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
4 | Mark | 25 | Rich-Mond | 65000 | 2017-04-26
5 | David | 27 | Texas | 85000 | 2018-04-06
6 | Kim | 22 | South-Hall | 45000 | 2019-09-12
(4 rows)
17,PostgreSQL ORDER BY 语句
在 PostgreSQL 中,ORDER BY 用于对一列或者多列数据进行升序(ASC)或者降序(DESC)排列。
语法
ORDER BY 子句的基础语法如下:
SELECT column-list
FROM table_name
[WHERE condition]
[ORDER BY column1, column2, .. columnN] [ASC | DESC];
您可以在 ORDER BY 中使用一列或者多列,但是必须保证要排序的列必须存在。
ASC 表示升序,DESC 表示降序。
实例
创建 COMPANY 表,数据内容如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2014-01-01
2 | Allen | 25 | Texas | 27500 | 2015-02-18
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
4 | Mark | 25 | Rich-Mond | 65000 | 2017-04-26
5 | David | 27 | Texas | 85000 | 2018-04-06
6 | Kim | 22 | South-Hall | 45000 | 2019-09-12
7 | James | 24 | Houston | 10000 | 2020-02-12
(7 rows)
下面实例将对结果根据 AGE 字段值进行升序排列:
runoobdb=# select * from company order by age asc;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
6 | Kim | 22 | South-Hall | 45000 | 2019-09-12
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
7 | James | 24 | Houston | 10000 | 2020-02-12
4 | Mark | 25 | Rich-Mond | 65000 | 2017-04-26
2 | Allen | 25 | Texas | 27500 | 2015-02-18
5 | David | 27 | Texas | 85000 | 2018-04-06
1 | Paul | 32 | California | 20000 | 2014-01-01
(7 rows)
下面实例将对结果根据 NAME 字段值和 SALARY 字段值进行升序排序:
runoobdb=# select * from company order by name, salary asc;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
2 | Allen | 25 | Texas | 27500 | 2015-02-18
5 | David | 27 | Texas | 85000 | 2018-04-06
7 | James | 24 | Houston | 10000 | 2020-02-12
6 | Kim | 22 | South-Hall | 45000 | 2019-09-12
4 | Mark | 25 | Rich-Mond | 65000 | 2017-04-26
1 | Paul | 32 | California | 20000 | 2014-01-01
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
(7 rows)
下面实例将对结果根据NAME字段值进行降序排列:
runoobdb=# select * from company order by name desc;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
1 | Paul | 32 | California | 20000 | 2014-01-01
4 | Mark | 25 | Rich-Mond | 65000 | 2017-04-26
6 | Kim | 22 | South-Hall | 45000 | 2019-09-12
7 | James | 24 | Houston | 10000 | 2020-02-12
5 | David | 27 | Texas | 85000 | 2018-04-06
2 | Allen | 25 | Texas | 27500 | 2015-02-18
(7 rows)
18,PostgreSQL GROUP BY 语句
在 PostgreSQL 中,GROUP BY 语句和 SELECT 语句一起使用,用来对相同的数据进行分组。
GROUP BY 在一个 SELECT 语句中,放在 WHRER 子句的后面,ORDER BY 子句的前面。
语法
下面给出了 GROUP BY 子句的基本语法:
SELECT column-list
FROM table_name
WHERE [ conditions ]
GROUP BY column1, column2....columnN
ORDER BY column1, column2....columnN
GROUP BY 子句必须放在 WHERE 子句中的条件之后,必须放在 ORDER BY 子句之前。
在 GROUP BY 子句中,你可以对一列或者多列进行分组,但是被分组的列必须存在于列清单中。
实例
创建 COMPANY 表,数据内容如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2014-01-01
2 | Allen | 25 | Texas | 27500 | 2015-02-18
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
4 | Mark | 25 | Rich-Mond | 65000 | 2017-04-26
5 | David | 27 | Texas | 85000 | 2018-04-06
6 | Kim | 22 | South-Hall | 45000 | 2019-09-12
7 | James | 24 | Houston | 10000 | 2020-02-12
(7 rows)
面实例将根据 NAME 字段值进行分组,找出每个人的工资总额:
runoobdb=# select name, sum(salary) from company group by name;
name | sum
-------+-------
Teddy | 18000
David | 85000
Paul | 20000
Kim | 45000
Mark | 65000
Allen | 27500
James | 10000
(7 rows)
现在我们添加使用下面语句在 CAMPANY 表中添加三条记录:
INSERT INTO COMPANY VALUES (8, 'Paul', 24, 'Houston', 20000.00, '2017-5-4');
INSERT INTO COMPANY VALUES (9, 'James', 44, 'Norway', 5000.00, '2018-6-18');
INSERT INTO COMPANY VALUES (10, 'James', 45, 'Texas', 5000.00, '2019-11-11');
现在 COMPANY 表中存在重复的名称,数据如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2014-01-01
2 | Allen | 25 | Texas | 27500 | 2015-02-18
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
4 | Mark | 25 | Rich-Mond | 65000 | 2017-04-26
5 | David | 27 | Texas | 85000 | 2018-04-06
6 | Kim | 22 | South-Hall | 45000 | 2019-09-12
7 | James | 24 | Houston | 10000 | 2020-02-12
8 | Paul | 24 | Houston | 20000 | 2017-05-04
9 | James | 44 | Norway | 5000 | 2018-06-18
10 | James | 45 | Texas | 5000 | 2019-11-11
(10 rows)
现在再根据 NAME 字段值进行分组,找出每个客户的工资总额:
runoobdb=# select name, sum(salary) from company group by name order by name;
name | sum
-------+-------
Allen | 27500
David | 85000
James | 20000
Kim | 45000
Mark | 65000
Paul | 40000
Teddy | 18000
(7 rows)
下面实例将 ORDER BY 子句与 GROUP BY 子句一起使用:
runoobdb=# select name, sum(salary) from company group by name order by name desc;
name | sum
-------+-------
Teddy | 18000
Paul | 40000
Mark | 65000
Kim | 45000
James | 20000
David | 85000
Allen | 27500
(7 rows)
19,PostgreSQL WITH 子句
在 PostgreSQL 中,WITH 子句提供了一种编写辅助语句的方法,以便在更大的查询中使用。
WITH 子句有助于将复杂的大型查询分解为更简单的表单,便于阅读。这些语句通常称为通用表表达式(Common Table Express, CTE),也可以当做一个为查询而存在的临时表。
WITH 子句是在多次执行子查询时特别有用,允许我们在查询中通过它的名称(可能是多次)引用它。
WITH 子句在使用前必须先定义。
语法
WITH 查询的基础语法如下:
WITH
name_for_summary_data AS (
SELECT Statement)
SELECT columns
FROM name_for_summary_data
WHERE conditions <=> (
SELECT column
FROM name_for_summary_data)
[ORDER BY columns]
name_for_summary_data 是 WITH 子句的名称,name_for_summary_data 可以与现有的表名相同,并且具有优先级。
可以在 WITH 中使用数据 INSERT, UPDATE 或 DELETE 语句,允许您在同一个查询中执行多个不同的操作。
WITH 递归
在 WITH 子句中可以使用自身输出的数据。
公用表表达式 (CTE) 具有一个重要的优点,那就是能够引用其自身,从而创建递归 CTE。递归 CTE 是一个重复执行初始 CTE 以返回数据子集直到获取完整结果集的公用表表达式。
实例
创建 COMPANY 表,数据内容如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2014-01-01
2 | Allen | 25 | Texas | 27500 | 2015-02-18
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
4 | Mark | 25 | Rich-Mond | 65000 | 2017-04-26
5 | David | 27 | Texas | 85000 | 2018-04-06
6 | Kim | 22 | South-Hall | 45000 | 2019-09-12
7 | James | 24 | Houston | 10000 | 2020-02-12
8 | Paul | 24 | Houston | 20000 | 2017-05-04
9 | James | 44 | Norway | 5000 | 2018-06-18
10 | James | 45 | Texas | 5000 | 2019-11-11
(10 rows)
下面将使用 WITH 子句在上表中查询数据:
runoobdb=# with cte as (select id, name, age, address, salary, join_date from company) select * from cte;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2014-01-01
2 | Allen | 25 | Texas | 27500 | 2015-02-18
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
4 | Mark | 25 | Rich-Mond | 65000 | 2017-04-26
5 | David | 27 | Texas | 85000 | 2018-04-06
6 | Kim | 22 | South-Hall | 45000 | 2019-09-12
7 | James | 24 | Houston | 10000 | 2020-02-12
8 | Paul | 24 | Houston | 20000 | 2017-05-04
9 | James | 44 | Norway | 5000 | 2018-06-18
10 | James | 45 | Texas | 5000 | 2019-11-11
(10 rows)
接下来让我们使用 RECURSIVE 关键字和 WITH 子句编写一个查询,查找 SALARY(工资) 字段小于 20000 的数据并计算它们的和:
runoobdb=# with recursive t(n) as ( values(0) union all select salary from company where salary < 20000) select sum(n) from t;
sum
-------
38000
(1 row)
下面我们建立一张和 COMPANY 表相似的 COMPANY1 表,使用 DELETE 语句和 WITH 子句删除 COMPANY 表中 SALARY(工资) 字段大于等于 30000 的数据,并将删除的数据插入 COMPANY1 表,实现将 COMPANY 表数据转移到 COMPANY1 表中:
runoobdb=# create table company1(
id int primary key not null,
name text not null,
age int not null,
address char(50),
salary real,
join_date date);
runoobdb=# select * from company1;
id | name | age | address | salary | join_date
----+------+-----+---------+--------+-----------
(0 rows)
runoobdb=# with moved_rows as ( delete from company where salary >= 30000 returning *) insert into company1 (select * from moved_rows);
INSERT 0 3
此时,CAMPANY 表和 CAMPANY1 表的数据如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2014-01-01
2 | Allen | 25 | Texas | 27500 | 2015-02-18
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
7 | James | 24 | Houston | 10000 | 2020-02-12
8 | Paul | 24 | Houston | 20000 | 2017-05-04
9 | James | 44 | Norway | 5000 | 2018-06-18
10 | James | 45 | Texas | 5000 | 2019-11-11
(7 rows)
runoobdb=# select * from company1;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
4 | Mark | 25 | Rich-Mond | 65000 | 2017-04-26
5 | David | 27 | Texas | 85000 | 2018-04-06
6 | Kim | 22 | South-Hall | 45000 | 2019-09-12
(3 rows)
20,PostgreSQL HAVING 子句
HAVING 子句可以让我们筛选分组后的各组数据。
WHERE 子句在所选列上设置条件,而 HAVING 子句则在由 GROUP BY 子句创建的分组上设置条件。
语法
下面是 HAVING 子句在 SELECT 查询中的位置:
SELECT
FROM
WHERE
GROUP BY
HAVING
ORDER BY
HAVING 子句必须放置于 GROUP BY 子句后面,ORDER BY 子句前面,下面是 HAVING 子句在 SELECT 语句中基础语法:
SELECT column1, column2
FROM table1, table2
WHERE [ conditions ]
GROUP BY column1, column2
HAVING [ conditions ]
ORDER BY column1, column2
实例
创建 COMPANY 表,数据内容如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2014-01-01
2 | Allen | 25 | Texas | 27500 | 2015-02-18
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
4 | Mark | 25 | Rich-Mond | 6500 | 2018-05-20
5 | David | 27 | Texas | 80500 | 2018-07-20
6 | Kim | 22 | South-Hall | 40500 | 2019-07-10
7 | James | 24 | Houston | 10000 | 2017-03-02
8 | Paul | 24 | Houston | 20000 | 2018-09-02
9 | James | 44 | Norway | 5000 | 2017-09-20
10 | James | 45 | Texas | 5000 | 2015-10-02
(10 rows)
下面实例将找出根据 NAME 字段值进行分组,并且 name(名称) 字段的计数少于 2 数据:
runoobdb=# select name from company group by name having count(name) < 2;
name
-------
Teddy
David
Kim
Mark
Allen
(5 rows)
下面实例将找出根据 name 字段值进行分组,并且名称的计数大于 1 数据:
runoobdb=# select name from company group by name having count(name) > 1;
name
-------
Paul
James
(2 rows)
21,PostgreSQL DISTINCT 关键字
在 PostgreSQL 中,DISTINCT 关键字与 SELECT 语句一起使用,用于去除重复记录,只获取唯一的记录。
我们平时在操作数据时,有可能出现一种情况,在一个表中有多个重复的记录,当提取这样的记录时,DISTINCT 关键字就显得特别有意义,它只获取唯一一次记录,而不是获取重复记录。
语法
用于去除重复记录的 DISTINCT 关键字的基本语法如下:
SELECT DISTINCT column1, column2,.....columnN
FROM table_name
WHERE [condition]
创建 COMPANY 表,数据内容如下:
runoobdb=# select * from company;
id | name | age | address | salary | join_date
----+-------+-----+----------------------------------------------------+--------+------------
1 | Paul | 32 | California | 20000 | 2014-01-01
2 | Allen | 25 | Texas | 27500 | 2015-02-18
3 | Teddy | 23 | Norway | 18000 | 2016-03-28
4 | Mark | 25 | Rich-Mond | 6500 | 2018-05-20
5 | David | 27 | Texas | 80500 | 2018-07-20
6 | Kim | 22 | South-Hall | 40500 | 2019-07-10
7 | James | 24 | Houston | 10000 | 2017-03-02
8 | Paul | 24 | Houston | 20000 | 2018-09-02
9 | James | 44 | Norway | 5000 | 2017-09-20
10 | James | 45 | Texas | 5000 | 2015-10-02
(10 rows)
接下来我们找出 COMPANY 表中的所有 NAME:
runoobdb=# select name from company;
name
-------
Paul
Allen
Teddy
Mark
David
Kim
James
Paul
James
James
(10 rows)
现在我们在 SELECT 语句中使用 DISTINCT 子句:
runoobdb=# select distinct name from company;
name
-------
Teddy
David
Paul
Kim
Mark
Allen
James
(7 rows)
从结果可以看到,重复数据已经被删除。
参考资料:
https://www.runoob.com/postgresql/postgresql-tutorial.html