1. tf.argmax()函数
tf.argmax可以认为就是np.argmax。tensorflow使用numpy实现的这个API。
简单的说,tf.argmax就是返回最大的那个数值所在的下标。tf.argmax(array,axis)
当axis=1时返回每列最大值的下标,当axis=0时返回每行最大值的下班。
2. tf.equal()函数
tf.equal(A,B)是对比这两个矩阵或者向量的相等的元素,如果是相等的那就返回True,反正返回False,返回的值的矩阵维度和A是一样的
A = [[1,3,4,5,6]]
B = [[1,3,4,3,2]]
with tf.Session() as sess:
print(sess.run(tf.equal(A, B)))
[[ True True True False False]]
3. tf.cast()函数
tf.cast(x, dtype)将x的数据格式转化成dtype.
a = tf.Variable([1,0,0,1,1])
b = tf.cast(a,dtype=tf.bool)
sess = tf.Session()
a = tf.Variable([1,0,0,1,1])
b = tf.cast(a,dtype=tf.bool)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
print(sess.run(b))
[ True False False True True]
4. tf.truncated_normal()
tf.truncated_normal(shape, mean, stddev):shape表示生成张量的维度,mean是均值,stddev是标准差。这个函数产生正太分布,均值和标准差自己设定。这是一个截断的产生正太分布的函数,就是说产生正太分布的值如果与均值的差值大于两倍的标准差,那就重新生成。和一般的正太分布的产生随机数据比起来,这个函数产生的随机数与均值的差距不会超过两倍的标准差,但是一般的别的函数是可能的。
import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;
c = tf.truncated_normal(shape=[10,10], mean=0, stddev=1)
with tf.Session() as sess:
print(sess.run(c))
[[ 0.56077307 1.74287605 -0.15655719 0.87136668 -0.4219175 0.94079614
-1.31186545 1.94287431 0.70748854 1.15509737]
[ 0.32469562 -0.91890186 -0.44398952 1.25986481 -1.07295966 0.21889997
0.19389877 -1.22909117 1.34865403 0.87812191]
[-0.83542323 -0.05598836 -1.05256093 -1.16475403 -0.17121609 -0.55075479
-0.37847248 0.14151201 0.36596569 0.55171227]
[ 0.45216689 0.12429248 -0.4333829 -0.00368057 -0.20933141 0.5465408
1.06096387 1.47238612 -1.99268937 1.28203201]
[ 0.36932501 0.30012983 1.94679129 0.59601396 -0.16721351 -0.42786792
0.917597 -1.6504811 -0.81060582 -0.35126168]
[-1.48954999 -0.42889833 0.31517059 1.00009787 0.26073182 1.26285052
-1.80997884 0.51399821 -0.27673215 0.15389352]
[ 0.8669793 -0.28650126 1.39484227 -0.4041909 -1.70028269 0.58513969
0.75772232 -0.47386578 -0.34529254 -0.71658897]
[ 0.74709773 -0.0835886 1.14453304 0.70367438 0.07037418 -0.15808868
0.23158503 -0.67268801 0.55869597 0.12777361]
[-0.52604282 0.64181858 -0.04147881 0.78596973 0.69087744 0.56500375
-1.12409449 -0.42864376 0.30804652 1.33116138]
[-1.36940789 -0.4526186 -0.87445366 0.19748467 -0.06541829 -0.2672275
0.63084471 0.76155263 0.83874393 0.91775542]]