遇到这种问题时,我是使用了torch.mean函数。如果不添加a = a.float(),会报这个错。原因是因为mean函数只能对float类型数据计算平均值,而a是int64类型。因此将其转换为float类型即可。
import torch
a = torch.randint(1,9,[3,4])
a = a.float()
print(a.shape)
print(a)
zeros = torch.zeros_like(a[0,:])
ones = torch.ones_like(a[0,:])
output = a.clone()
for n in range(a.shape[0]):
output[n, :] = torch.where(a[n, :] >= torch.mean(a[n, :]), ones, zeros)
print(output.shape)
print(output)
顺便介绍一下torch.mean()函数,mean()函数的参数:dim=0,按列求平均值,返回的形状是(1,列数);dim=1,按行求平均值,返回的形状是(行数,1),默认不设置dim的时候,返回的是所有元素的平均值。