城市最短路径c++

题目描述

给定m个城市之间的交通图(可视为带权有向图),若城市i与城市j之间有路相通,则边权Wij表示道路的长度。

输入格式

第一行两个整数 m、n,表示城市的数目,道路的数目。

接下来 n 行,每行三个整数 u、v、w,表示有一条从城市 u 去往城市 v 的长度为 w 的道路。

  • 6
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
蚁群算法是一种模拟蚂蚁觅食行为的算法,用于解决路径规划问题。它适用于求解最短路径问题,包括求解最短路径和最优路径等。 下面以一个简单的案例来说明蚁群算法在路径规划中的应用。 假设有一个城市地图,其中有多个城市之间的连接道路,我们需要找到从起点城市到终点城市最短路径。 首先,我们需要将每个城市看作一个节点,并根据道路的距离来确定节点之间的边。然后,将一定数量的蚂蚁放置在起点城市,并让它们开始在城市间移动。 蚂蚁会根据一定的算法来选择下一个要访问的城市。通常情况下,蚂蚁更倾向于选择距离当前城市更近的城市,并且会受到已经被其他蚂蚁选择的路径的影响(信息素)。 当蚂蚁到达终点城市后,我们会评估它们所选择的路径长度,并根据路径长度来更新信息素。较短路径上的蚂蚁会释放更多的信息素,而较长路径上的蚂蚁会释放较少的信息素。这样,信息素会在城市间逐渐累积,进而影响其他蚂蚁的选择。 通过多轮迭代,蚂蚁们会逐渐找到一条最短路径,并且这条路径上的信息素含量会越来越高。最终,我们可以选择信息素含量最高的路径作为最优解,即最短路径。 需要注意的是,蚁群算法是一种启发式算法,其结果并不一定是全局最优解,但通常情况下能够找到较好的解决方案。 以上就是蚁群算法在路径规划中求解最短路径的一个简单案例。在实际应用中,蚁群算法还可以应用于其他领域的优化问题,如资源调度、旅行商问题等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值