铁磁材料线性力磁耦合本构关系

本文探讨了铁磁材料的磁致伸缩和逆磁致伸缩效应,重点在于其力磁耦合的线性方程描述。线性力磁耦合关系涉及到磁感应强度、磁场强度、应变张量、应力张量、弹性柔度张量和压磁系数张量等关键参数,并通过张量形式、张量分量形式和矩阵形式进行表达。这一理论对于理解和应用铁磁材料的特性至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

铁磁材料因磁致伸缩效应和逆磁致伸缩效应具有复杂的力磁耦合关系,在研究的早期阶段,主要考虑用线性方程来描述铁磁材料的力磁耦合关系,具体如下:

主要涉及磁感应强度B,磁场强度H,应变张量\varepsilon,应力张量\sigma,弹性柔度张量s和压磁系数张量d,磁导率\mu.因为涉及张量,所以线性力磁耦合关系有三种表现形式,分别是:

1)张量形式

\left\{\begin{matrix} \varepsilon =s^{H}:\sigma +d^{*}\cdot H\\ B=d:\sigma+\mu^{\sigma }\cdot H \end{matrix}\right.

2)张量分量形式

\left\{\begin{matrix} \varepsilon _{ij}=s_{ijkl}^{H}\sigma _{kl}+d_{nij}^{*}H_{n}\\ B_{n}=d_{nij}\sigma _{ij}+\mu _{nm}^{\sigma }H_{m}\end{matrix}\right.

3)矩阵形式

\left\{\begin{matrix} \varepsilon =s^{H}\sigma +d^{*}H\\ B=d\sigma +\mu ^{\sigma }H\end{matrix}\right.

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值