[Matlab科学绘图] 由欧拉角绘制极图和反极图

因为科研需要,需要自己仿真产生一些晶粒方向,并对其进行极图和反极图展示,在小木虫上找到一个matlab工具包mtex,利用此工具包可以绘制极图和反极图,但是并没有现成的程序可供参考,于是自己摸索出可以利用欧拉角绘制极图和反极图,记录于此供大家交流学习。

Mtex工具包网址:https://mtex-toolbox.github.io/

欧拉角数据参考小木虫上已有的:http://muchong.com/bbs/viewthread.php?tid=12562139

此处用的欧拉角是内在旋转(Z-X-Z),Bunge约记符号,欧拉角相关知识参考博客欧拉角和坐标变换个人总结

相应的matlab代码如下,工具包的其他功能暂时没用到,所以不是很清楚。

提示:小木虫的欧拉角数据只需要截取前三列数据即可。

clc,clear
fname=load('C:\Users\zhwdell\Desktop\TEX_PH1.txt');%Bunge Euler angle convention
cs = crystalSymmetry('cubic');         %晶体对称性
ss = specimenSymmetry('triclinic'); %试样对称性
ori = orientation.byEuler(fname(:,1)*degree,fname(:,2)*degree,fname(:,3)*degree,cs,ss);
plotPDF(ori,Miller({1,0,0},{1,1,0},{1,1,1},cs),'all') %绘制极图
plotIPDF(ori,[vector3d.X,vector3d.Y,vector3d.Z],'all')%绘制反极图

绘制的极图和反极图结果如下:

极图

 

 

反极图

 

1 2/3维像分割工具箱 2 PSORT粒子群优化工具箱 3 matlab计量工具箱Lesage 4 MatCont7p1 5 matlab模糊逻辑工具箱函数 6 医学像处理工具箱 7 人工蜂群工具箱 8 MPT3安装包 9 drEEM toolbox 10 DOMFluor Toolbox v1.7 11 Matlab数学建模工具箱 12 马尔可夫决策过程(MDP)工具箱MDPtoolbox 13 国立SVM工具箱 14 模式识别与机器学习工具箱 15 ttsbox1.1语音合成工具箱 16 分数阶傅里叶变换的程序FRFT 17 魔方模拟器与规划求解 18 隐马尔可夫模型工具箱 HMM 19 理论工具箱GrTheory 20 自由曲线拟合工具箱ezyfit 21 分形维数计算工具箱FracLab 2.2 22 For-Each 23 PlotPub 24 Sheffield大学最新遗传算法工具箱 25 Camera Calibration 像机标定工具箱 26 Qhull(二维三维三角分解、泰森)凸包工具箱 2019版 27 jplv7 28 MatlabFns 29 张量工具箱Tensor Toolbox 30 海洋要素计算工具箱seawater 31 地工具箱m_map 32 othercolor配色工具包 33 Matlab数学建模工具箱 34 元胞自动机 35 量子波函数演示工具箱 36 像局域特征匹配工具箱 37 像分割graphcut工具箱 38 NSGA-II工具箱 39 chinamap中国地数据工具箱(大陆地区) 40 2D GaussFit高斯拟合工具箱 41 dijkstra最小成本路径算法 42 多维数据快速矩阵乘法 43 约束粒子群优化算法 44 脑MRI肿瘤的检测与分类 45 Matlab数值分析算法程序 46 matlab车牌识别完整程序 47 机器人工具箱robot-10.3.1 48 cvx凸优化处理工具箱 49 hctsa时间序列分析工具箱 50 神经科学工具箱Psychtoolbox-3-PTB 51 地震数据处理工具CREWES1990版 52 经济最优化工具箱CompEcon 53 基于约束的重构分析工具箱Cobratoolbox 54 Schwarz-Christoffel Toolbox 55 Gibbs-SeaWater (GSW)海洋学工具箱 56 光声仿真工具箱K-Wave-toolbox-1.2.1 57 语音处理工具箱Sap-Voicebox 58 贝叶斯网工具箱Bayes Net Toolbox(BNT) 59 计算机视觉工具箱VFfeat-0.9.21 60 全向相机校准工具箱OCamCalib_v3.0 61 心理物理学数据分析工具箱Palamedes1_10_3 62 生理学研究工具箱EEGLAB 63 磁共振成像处理工具箱CONN 18b 64 matlab 复杂网络工具箱 65 聚类分析工具箱FuzzyClusteringToolbox 66 遗传规划matlab工具箱 67 粒子群优化工具箱 68 数字像处理工具箱DIPUM Toolbax V1.1.3 69 遗传算法工具箱 70 鱼群算法工具箱OptimizedAFSAr 71 蚁群算法工具箱 72 matlab优化工具箱 73 数据包络分析工具箱 74 像分割质量评估工具包 75 相关向量机工具箱 76 音频处理工具箱 77 nurbs工具箱 78 Nurbs-surface工具箱 79 grabit数据提取工具箱 80 量子信息工具箱QLib 81 DYNAMO工具箱 82 NEDC循环的整车油耗量 83 PlotHub工具箱 84 MvCAT_Ver02.01 85 Regularization Tools Version 4.1 86 MatrixVB 4.5(含注册) 87 空间几何工具箱 matGeom-1.2.2 88 大数计算工具箱 VariablePrecisionIntegers 89 晶体织构分析工具包 mtex-5.7.0 90 Minimal Paths 2工具箱 91 Matlab数学建模工具箱
<think>嗯,用户想在MATLAB里根据pitch、heading、roll数据画三维旋转,还要标出坐标轴零点。首先,我需要确定这些角度对应的旋转顺序坐标系。通常,pitch、heading(也就是yaw)、roll分别对应绕Y、Z、X轴的旋转,但可能有不同的顺序,比如航空领域常用Z-Y-X顺序。需要确认这一点,但可能用户用的是常见的顺序。 接下来,得考虑如何将这些欧拉角转换为旋转矩阵。每个轴对应的旋转矩阵公式应该是对的,比如绕X轴旋转roll角度,矩阵是Rx,绕Y轴旋转pitch是Ry,绕Z轴旋转yaw是Rz。然后组合这些矩阵,顺序很重要,通常可能是ZYX的顺序,即先绕Z,再Y,再X。所以总旋转矩阵R = Rx * Ry * Rz?或者过来?这里可能需要再仔细检查矩阵乘法的顺序,因为旋转矩阵是按照顺序左乘还是右乘的问题。例如,如果按照Z-Y-X的顺序,应该是R = Rz * Ry * Rx?或者过来?比如,先应用的旋转在右边,所以如果先绕Z转,再绕Y,再绕X,那么应该是R = Rx * Ry * Rz?这个部分容易出错,需要确认正确的组合顺序。 假设正确的顺序是Yaw(绕Z轴)、Pitch(绕Y轴)、Roll(绕X轴),那么组合应该是R = Roll * Pitch * Yaw,也就是Rx * Ry * Rz。因为旋转矩阵是按照从右到左的顺序应用的。例如,一个向量v,先应用Yaw,再Pitch,再Roll,对应的矩阵是Rx*(Ry*(Rz*v))),所以组合后的矩阵是Rx*Ry*Rz。是的,这样顺序是对的。 接下来,绘制坐标系。初始坐标系可以用三个单位向量表示,比如x轴是[1;0;0],y轴是[0;1;0],z轴是[0;0;1]。应用旋转矩阵后,得到新的坐标轴方向。然后需要在三维中画出这些向量,用箭头表示,比如使用quiver3函数。零点就是原点,保持不动。 然后,画的步骤:创建初始坐标系,应用旋转矩阵,绘制旋转后的坐标系。可能需要用不同的颜色区分各个轴,比如红绿蓝对应XYZ。然后确保坐标轴标签正确,使用xlabel、ylabel、zlabel,并且用legend区分。还要调整视角,可能用view(3)来确保三维视角,加上网格,保持比例相等,避免变形,用axis equal。 另外,可能需要绘制旋转前后的坐标系对比,用虚线或淡色表示原始坐标系,实线表示旋转后的,这样更清晰。不过用户没有特别提到这点,可能只需显示旋转后的状态。但为了更直观,可能加上原始坐标系的参考。 测试部分,可能需要给出一个例子,比如给定三个角度,计算旋转矩阵,然后绘制。例如,pitch=30度,heading=45度,roll=60度,转换为弧度计算三角函数值。然后生成旋转矩阵,应用到坐标轴向量上,画出箭头。 可能需要注意的问题:欧拉角的万向节锁,但用户可能只需要基本的绘图,所以暂时不考虑这个问题。另外,旋转矩阵是否正确,需要检查各个旋转矩阵的构造是否正确,比如绕Y轴的旋转矩阵是否正确,因为绕Y轴的旋转矩阵其他两个轴的顺序可能不同,因为Y轴是cos在左上右下,而XZ轴是其他形式。例如,绕Y轴的旋转矩阵应该是: Ry = [cosθ 0 sinθ; 0 1 0; -sinθ 0 cosθ] 是的,这个是对的。绕XZ轴的矩阵是否正确也需要确认。 代码的大致流程: 1. 定义角度,转换为弧度。 2. 计算每个轴的旋转矩阵。 3. 组合总旋转矩阵,注意顺序。 4. 初始坐标轴向量。 5. 应用旋转得到新向量。 6. 绘制原点旋转后的坐标轴。 7. 设置形属性,标签,例,视角等。 可能的错误点:旋转顺序是否正确,矩阵乘法顺序是否正确,以及是否在绘图时正确使用quiver3的参数,比如起点是原点,方向是旋转后的向量。 另外,用户提到要标出坐标轴零点。零点就是原点,坐标轴标签可能已经自动标出,但需要确保显示正确。或者可能需要手动添加文本标签在箭头末端,例如用text函数在旋转后的向量末端添加X', Y', Z'。 总结步骤,写出示例代码,并解释每个部分的作用。需要确保代码在MATLAB中运行正确,比如角度转换,矩阵乘法使用正确的乘法符号(*),以及quiver3的参数是否正确,比如起点是[0,0,0],终点是旋转后的向量。 可能还需要设置坐标轴范围,让形显示合适,比如用axis([-1 1 -1 1 -1 1]),保持比例一致。 最后,验证代码是否正确。可以手动计算一个简单的例子,比如绕Z轴旋转90度,检查新的X轴是否指向原来的Y方向,等等。</think>在MATLAB中根据pitch(俯仰角)、heading(偏航角)、roll(滚转角)绘制三维旋转,需遵循以下步骤: --- ### **1. 角度转弧度** MATLAB三角函数使用弧度制,需先将角度转换为弧度: ```matlab pitch_deg = 30; % 示例值(绕Y轴旋转) heading_deg = 45; % 示例值(绕Z轴旋转) roll_deg = 60; % 示例值(绕X轴旋转) pitch = deg2rad(pitch_deg); heading = deg2rad(heading_deg); roll = deg2rad(roll_deg); ``` --- ### **2. 构建旋转矩阵** 采用Z-Y-X旋转顺序(航空领域常用): ```matlab % 绕Z轴旋转(偏航角) Rz = [cos(heading) -sin(heading) 0; sin(heading) cos(heading) 0; 0 0 1]; % 绕Y轴旋转(俯仰角) Ry = [cos(pitch) 0 sin(pitch); 0 1 0; -sin(pitch) 0 cos(pitch)]; % 绕X轴旋转(滚转角) Rx = [1 0 0; 0 cos(roll) -sin(roll); 0 sin(roll) cos(roll)]; % 组合旋转矩阵 R = Rx * Ry * Rz; % 注意顺序:先Z→再Y→最后X ``` --- ### **3. 绘制坐标系** #### **3.1 定义初始坐标系** ```matlab origin = [0 0 0]; % 零点 axes_original = eye(3); % 初始坐标轴[X; Y; Z] = [1,0,0; 0,1,0; 0,0,1] ``` #### **3.2 应用旋转** ```matlab axes_rotated = R * axes_original; % 旋转后的坐标轴 ``` #### **3.3 可视化** ```matlab figure; hold on; grid on; axis equal; view(3); % 三维视角 xlabel('X'); ylabel('Y'); zlabel('Z'); % 绘制旋转后的坐标轴 quiver3(origin(1), origin(2), origin(3), axes_rotated(1,1), axes_rotated(2,1), axes_rotated(3,1), 'r', 'LineWidth', 2); % X轴(红色) quiver3(origin(1), origin(2), origin(3), axes_rotated(1,2), axes_rotated(2,2), axes_rotated(3,2), 'g', 'LineWidth', 2); % Y轴(绿色) quiver3(origin(1), origin(2), origin(3), axes_rotated(1,3), axes_rotated(2,3), axes_rotated(3,3), 'b', 'LineWidth', 2); % Z轴(蓝色) % 标注零点 text(0, 0, 0, ' 原点', 'FontSize', 10); % 添加例 legend({'X''轴', 'Y''轴', 'Z''轴'}, 'Location', 'northeast'); ``` --- ### **4. 完整代码示例** ```matlab % 定义角度 pitch_deg = 30; heading_deg = 45; roll_deg = 60; % 转换为弧度 pitch = deg2rad(pitch_deg); heading = deg2rad(heading_deg); roll = deg2rad(roll_deg); % 构建旋转矩阵 Rz = [cos(heading) -sin(heading) 0; sin(heading) cos(heading) 0; 0 0 1]; Ry = [cos(pitch) 0 sin(pitch); 0 1 0; -sin(pitch) 0 cos(pitch)]; Rx = [1 0 0; 0 cos(roll) -sin(roll); 0 sin(roll) cos(roll)]; R = Rx * Ry * Rz; % 绘制坐标系 origin = [0 0 0]; axes_original = eye(3); axes_rotated = R * axes_original; figure; hold on; grid on; axis equal; view(3); xlabel('X'); ylabel('Y'); zlabel('Z'); quiver3(origin(1), origin(2), origin(3), axes_rotated(1,1), axes_rotated(2,1), axes_rotated(3,1), 'r', 'LineWidth', 2); quiver3(origin(1), origin(2), origin(3), axes_rotated(1,2), axes_rotated(2,2), axes_rotated(3,2), 'g', 'LineWidth', 2); quiver3(origin(1), origin(2), origin(3), axes_rotated(1,3), axes_rotated(2,3), axes_rotated(3,3), 'b', 'LineWidth', 2); text(0, 0, 0, ' 原点', 'FontSize', 10); legend({'X''轴', 'Y''轴', 'Z''轴'}, 'Location', 'northeast'); ``` --- ### **5. 关键说明** - **旋转顺序**:Z-Y-X(先绕Z轴偏航,再绕Y轴俯仰,最后绕X轴滚转) - **箭头颜色**:红(X轴)、绿(Y轴)、蓝(Z轴) - **形属性**:`axis equal`保证比例一致,`view(3)`启用三维视角 - **验证方法**:输入特定角度(如90°),观察坐标轴是否按预期对齐 执行代码后,将显示旋转后的三维坐标系,清晰标注原点各轴方向。
评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值