<think>嗯,用户想在MATLAB里根据pitch、heading、roll数据画三维旋转图,还要标出坐标轴和零点。首先,我需要确定这些角度对应的旋转顺序和坐标系。通常,pitch、heading(也就是yaw)、roll分别对应绕Y、Z、X轴的旋转,但可能有不同的顺序,比如航空领域常用Z-Y-X顺序。需要确认这一点,但可能用户用的是常见的顺序。
接下来,得考虑如何将这些欧拉角转换为旋转矩阵。每个轴对应的旋转矩阵公式应该是对的,比如绕X轴旋转roll角度,矩阵是Rx,绕Y轴旋转pitch是Ry,绕Z轴旋转yaw是Rz。然后组合这些矩阵,顺序很重要,通常可能是ZYX的顺序,即先绕Z,再Y,再X。所以总旋转矩阵R = Rx * Ry * Rz?或者反过来?这里可能需要再仔细检查矩阵乘法的顺序,因为旋转矩阵是按照顺序左乘还是右乘的问题。例如,如果按照Z-Y-X的顺序,应该是R = Rz * Ry * Rx?或者反过来?比如,先应用的旋转在右边,所以如果先绕Z转,再绕Y,再绕X,那么应该是R = Rx * Ry * Rz?这个部分容易出错,需要确认正确的组合顺序。
假设正确的顺序是Yaw(绕Z轴)、Pitch(绕Y轴)、Roll(绕X轴),那么组合应该是R = Roll * Pitch * Yaw,也就是Rx * Ry * Rz。因为旋转矩阵是按照从右到左的顺序应用的。例如,一个向量v,先应用Yaw,再Pitch,再Roll,对应的矩阵是Rx*(Ry*(Rz*v))),所以组合后的矩阵是Rx*Ry*Rz。是的,这样顺序是对的。
接下来,绘制坐标系。初始坐标系可以用三个单位向量表示,比如x轴是[1;0;0],y轴是[0;1;0],z轴是[0;0;1]。应用旋转矩阵后,得到新的坐标轴方向。然后需要在三维图中画出这些向量,用箭头表示,比如使用quiver3函数。零点就是原点,保持不动。
然后,画图的步骤:创建初始坐标系,应用旋转矩阵,绘制旋转后的坐标系。可能需要用不同的颜色区分各个轴,比如红绿蓝对应XYZ。然后确保坐标轴标签正确,使用xlabel、ylabel、zlabel,并且用legend区分。还要调整视角,可能用view(3)来确保三维视角,加上网格,保持比例相等,避免变形,用axis equal。
另外,可能需要绘制旋转前后的坐标系对比,用虚线或淡色表示原始坐标系,实线表示旋转后的,这样更清晰。不过用户没有特别提到这点,可能只需显示旋转后的状态。但为了更直观,可能加上原始坐标系的参考。
测试部分,可能需要给出一个例子,比如给定三个角度,计算旋转矩阵,然后绘制。例如,pitch=30度,heading=45度,roll=60度,转换为弧度计算三角函数值。然后生成旋转矩阵,应用到坐标轴向量上,画出箭头。
可能需要注意的问题:欧拉角的万向节锁,但用户可能只需要基本的绘图,所以暂时不考虑这个问题。另外,旋转矩阵是否正确,需要检查各个旋转矩阵的构造是否正确,比如绕Y轴的旋转矩阵是否正确,因为绕Y轴的旋转矩阵和其他两个轴的顺序可能不同,因为Y轴是cos在左上和右下,而X和Z轴是其他形式。例如,绕Y轴的旋转矩阵应该是:
Ry = [cosθ 0 sinθ; 0 1 0; -sinθ 0 cosθ]
是的,这个是对的。绕X和Z轴的矩阵是否正确也需要确认。
代码的大致流程:
1. 定义角度,转换为弧度。
2. 计算每个轴的旋转矩阵。
3. 组合总旋转矩阵,注意顺序。
4. 初始坐标轴向量。
5. 应用旋转得到新向量。
6. 绘制原点和旋转后的坐标轴。
7. 设置图形属性,标签,图例,视角等。
可能的错误点:旋转顺序是否正确,矩阵乘法顺序是否正确,以及是否在绘图时正确使用quiver3的参数,比如起点是原点,方向是旋转后的向量。
另外,用户提到要标出坐标轴和零点。零点就是原点,坐标轴标签可能已经自动标出,但需要确保显示正确。或者可能需要手动添加文本标签在箭头末端,例如用text函数在旋转后的向量末端添加X', Y', Z'。
总结步骤,写出示例代码,并解释每个部分的作用。需要确保代码在MATLAB中运行正确,比如角度转换,矩阵乘法使用正确的乘法符号(*),以及quiver3的参数是否正确,比如起点是[0,0,0],终点是旋转后的向量。
可能还需要设置坐标轴范围,让图形显示合适,比如用axis([-1 1 -1 1 -1 1]),保持比例一致。
最后,验证代码是否正确。可以手动计算一个简单的例子,比如绕Z轴旋转90度,检查新的X轴是否指向原来的Y方向,等等。</think>在MATLAB中根据pitch(俯仰角)、heading(偏航角)、roll(滚转角)绘制三维旋转图,需遵循以下步骤:
---
### **1. 角度转弧度**
MATLAB三角函数使用弧度制,需先将角度转换为弧度:
```matlab
pitch_deg = 30; % 示例值(绕Y轴旋转)
heading_deg = 45; % 示例值(绕Z轴旋转)
roll_deg = 60; % 示例值(绕X轴旋转)
pitch = deg2rad(pitch_deg);
heading = deg2rad(heading_deg);
roll = deg2rad(roll_deg);
```
---
### **2. 构建旋转矩阵**
采用Z-Y-X旋转顺序(航空领域常用):
```matlab
% 绕Z轴旋转(偏航角)
Rz = [cos(heading) -sin(heading) 0;
sin(heading) cos(heading) 0;
0 0 1];
% 绕Y轴旋转(俯仰角)
Ry = [cos(pitch) 0 sin(pitch);
0 1 0;
-sin(pitch) 0 cos(pitch)];
% 绕X轴旋转(滚转角)
Rx = [1 0 0;
0 cos(roll) -sin(roll);
0 sin(roll) cos(roll)];
% 组合旋转矩阵
R = Rx * Ry * Rz; % 注意顺序:先Z→再Y→最后X
```
---
### **3. 绘制坐标系**
#### **3.1 定义初始坐标系**
```matlab
origin = [0 0 0]; % 零点
axes_original = eye(3); % 初始坐标轴[X; Y; Z] = [1,0,0; 0,1,0; 0,0,1]
```
#### **3.2 应用旋转**
```matlab
axes_rotated = R * axes_original; % 旋转后的坐标轴
```
#### **3.3 可视化**
```matlab
figure;
hold on; grid on; axis equal;
view(3); % 三维视角
xlabel('X'); ylabel('Y'); zlabel('Z');
% 绘制旋转后的坐标轴
quiver3(origin(1), origin(2), origin(3), axes_rotated(1,1), axes_rotated(2,1), axes_rotated(3,1), 'r', 'LineWidth', 2); % X轴(红色)
quiver3(origin(1), origin(2), origin(3), axes_rotated(1,2), axes_rotated(2,2), axes_rotated(3,2), 'g', 'LineWidth', 2); % Y轴(绿色)
quiver3(origin(1), origin(2), origin(3), axes_rotated(1,3), axes_rotated(2,3), axes_rotated(3,3), 'b', 'LineWidth', 2); % Z轴(蓝色)
% 标注零点
text(0, 0, 0, ' 原点', 'FontSize', 10);
% 添加图例
legend({'X''轴', 'Y''轴', 'Z''轴'}, 'Location', 'northeast');
```
---
### **4. 完整代码示例**
```matlab
% 定义角度
pitch_deg = 30;
heading_deg = 45;
roll_deg = 60;
% 转换为弧度
pitch = deg2rad(pitch_deg);
heading = deg2rad(heading_deg);
roll = deg2rad(roll_deg);
% 构建旋转矩阵
Rz = [cos(heading) -sin(heading) 0;
sin(heading) cos(heading) 0;
0 0 1];
Ry = [cos(pitch) 0 sin(pitch);
0 1 0;
-sin(pitch) 0 cos(pitch)];
Rx = [1 0 0;
0 cos(roll) -sin(roll);
0 sin(roll) cos(roll)];
R = Rx * Ry * Rz;
% 绘制坐标系
origin = [0 0 0];
axes_original = eye(3);
axes_rotated = R * axes_original;
figure;
hold on; grid on; axis equal;
view(3);
xlabel('X'); ylabel('Y'); zlabel('Z');
quiver3(origin(1), origin(2), origin(3), axes_rotated(1,1), axes_rotated(2,1), axes_rotated(3,1), 'r', 'LineWidth', 2);
quiver3(origin(1), origin(2), origin(3), axes_rotated(1,2), axes_rotated(2,2), axes_rotated(3,2), 'g', 'LineWidth', 2);
quiver3(origin(1), origin(2), origin(3), axes_rotated(1,3), axes_rotated(2,3), axes_rotated(3,3), 'b', 'LineWidth', 2);
text(0, 0, 0, ' 原点', 'FontSize', 10);
legend({'X''轴', 'Y''轴', 'Z''轴'}, 'Location', 'northeast');
```
---
### **5. 关键说明**
- **旋转顺序**:Z-Y-X(先绕Z轴偏航,再绕Y轴俯仰,最后绕X轴滚转)
- **箭头颜色**:红(X轴)、绿(Y轴)、蓝(Z轴)
- **图形属性**:`axis equal`保证比例一致,`view(3)`启用三维视角
- **验证方法**:输入特定角度(如90°),观察坐标轴是否按预期对齐
执行代码后,将显示旋转后的三维坐标系,清晰标注原点和各轴方向。