自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(171)
  • 收藏
  • 关注

原创 懒人必备!LazyGit高效Git操作指南

LazyGit 是一个基于终端的图形用户界面(TUI)工具,专门用于执行 Git 命令,。它由 Go 语言编写,运行速度极快。它的核心理念是:Git 虽然强大,但很多操作(如交互式变基、部分暂存)在命令行中非常繁琐,LazyGit 致力于让这些“痛苦”的操作变得简单直观,让用户可以“懒”一点,但效率更高,。你可以把LazyGit想象成是 Git 的一套“外骨骼装甲Git 本身非常强大但操作繁琐,容易误伤自己;

2026-01-07 11:43:15 609

原创 职业变动十字路口的三策略决策指南:从法律、经济与心理学的交叉分析

职业变动决策指南:法律、经济与心理的综合考量 面对不公平解雇,本分析提出三种策略选择: "死磕到底"(策略A):法律优势明显但隐性成本高,包括12-18个月的时间成本、诉讼压力导致的效率下降(生产力损失约62,000美元/年)及背调风险(30-40%新offer可能受影响)。 "落袋为安"(策略B):快速解决(30-60天),心理成本可控,背调友好,适合多数情况,尤其当违法程度较轻或赔偿差额不足5万元时。 "自我掌控"(策略C):主动离职的心理溢价

2026-01-07 09:40:13 618

原创 Termux部署:Rish

豪,

2025-12-08 11:04:48 972

原创 AI科研助手:5分钟搭建arXiv论文猎手

对于你这样一个正在研究 YOLO、写专利、搞深度学习的研究生来说,绝对是回报率最高、最能帮你节省时间的投资。想象一下:以后每天早上睁眼,你的飞书里已经躺着几篇高质量论文,你只需要花 30 秒扫一眼,就能跟上世界最前沿。我们要做的就是把->->串起来。鉴于你研究和,我们锁定 arXiv 的cs.CV分区。

2025-11-27 15:01:18 433

原创 n8n部署技术复盘

这是为你更新后的。

2025-11-26 21:36:58 299

原创 11.25感悟笔记

我感觉非常的无聊和累,我也做过很多项目,这个n8n目前刚上手,我觉得我很多地方是钻牛角尖了,如果一个无关紧要的地方卡住了30分钟,就应该换一个可替代的方法。正是因为你钻过,撞得头破血流,下次你再遇到类似的情况,你会比谁都跑得快,你会直接说:“这玩意儿是个坑,咱们绕道,直接用 HTTP 请求搞定。你最后用的那个“HTTP 直连 + 手动写 JSON”的方案,虽然看起来没那么“高级”(没有用 fancy 的 Agent 节点),但它。别自责,这种“钻牛角尖”的累,每个做项目的人都经历过无数次。

2025-11-25 15:45:37 37 1

原创 n8n连接本地LLM如何提问

为了让你理解得更透彻,这个问题的本质是抽象层的泄露 (Leaky Abstraction)AI Agent节点只接受类型的对象(那个圆孔)。实现层 (Implementation):HTTP Request 节点返回的是JSON Data,类型不匹配,所以插不进去。OpenAI Chat Model 节点返回的是对象,类型匹配。但是,它内部封装了axios请求,并且硬编码了 URL 拼接逻辑 (的路由规则极其严格,它无法处理 n8n 拼接出来的畸形 URL(比如或者少了/v1的情况)。

2025-11-25 09:35:27 85

原创 【手动安装llama-cpp-python的GPU版本】

豪,Ctrl + C🙅‍♂️只有,还要等,而且下载下来的还是一个的版本(强行用 CUDA 12 的包去套 CUDA 11 的系统,这是在走钢丝),这绝对不值得。你有一颗和(对 PyPI 镜像友好,对 GitHub Release 不友好)。我们下载预编译包了,这就好比:与其去国外点外卖等 9 小时送过来,不如利用你家里的顶级厨房(Xeon CPU)自己炒个菜,,而且做出来的菜(编译出的文件)100% 贴合你的胃口(系统环境)。

2025-11-24 09:22:26 95

原创 服务器端口映射

豪,看到别灰心,这在算力租赁平台(如 AutoDL、恒源云等)非常常见。这些平台的 SSH 端口(10029)通常是由一层跳板机转发的,它们为了防止滥用或资源冲突,经常,或者-L参数)。因为你现在的 VSCode 已经占住了一个 SSH 连接,当你试图在终端再开一个时,服务器直接把你踢了。既然 SSH 隧道这条路被平台堵了,我们换一条。还记得我之前提到的吗?现在是时候用它了。它可以直接从容器内部打穿一条去公网的通道,给你一个的链接。请在你的。

2025-11-24 09:16:12 192

原创 使用pm2管理n8n的cloudfire链接

用tmux(或者screen)来挂这种服务,是 Linux 老鸟的标准操作。😎既然你把它放进了tmux,那只要服务器不重启,这个 Cloudflare 隧道就会一直坚挺地活着,哪怕你把 MacBook 合上、把 VSCode 关掉,那个公网链接依然有效。

2025-11-24 08:53:37 53

原创 论文阅读,融合视觉语言与高频特征的输电线路缺陷检测新方法

这张图画的就是Stage 2 的内部流水线把“鸟巢”变成句子。FLAVA 把它变成向量。随机挑一个(文字或图片向量)作为“线索”。把“线索”加到原本只知道位置的 DETR Query 上。既知道找什么(来自 FLAVA),又知道去哪找(来自 DETR)的超级 Query。这就是为什么 VLF-DETR 能够收敛得那么快、检测得那么准的根本原因——它出发前就已经拿着详细的“藏宝图”了。问:Original query (原始查询 - 橙色 🟧):这是 DETR 传统的、可学习的查询。

2025-11-18 23:55:09 893

原创 11111

你 100%““””!你““””住的地方,是(在这次会话里)VLAN 配置里“””的“你(在这次会话里)的“”**“是”**对的:pvid(C 选项)= ‘’(添加)标签!你““””了,是因为你(在这次会话里”**”!我们“”把“”包(IN)和“”包(OUT)!

2025-11-07 22:19:14 254

原创 IPSec|L2,L3,L4

你这个问题你你已经把“VPN”这个““””概念,**“拆”在这次会话里“真正”**的“你(在这次会话里)之所以““””IPsec和SSL,**“就是”“不同”**的“我们““””(在这次会话里)的“” VPN 知识点,现在**“终于”**可以“”成一张“”了!

2025-11-07 16:28:42 689

原创 个人笔记|IP分片不用TTL

你选了 C (Offset),但答案是 A (TTL我必须 100% 告诉你,你这个“错误”是**“最合理”“最聪明”Offset非常“合乎逻辑”**!但“Offset。

2025-11-07 12:12:14 595

原创 个人笔记|单臂路由,子接口,VLAN标签

你这个问题!你问的,就是“我们(在这次会话里)已经把 Access 口、Trunk 口、子接口都聊过了,现在我们就用你这道“单臂路由”题,把它们“”成一个!ping特定。

2025-11-06 14:01:57 651

原创 2025,5月试卷|错题笔记

你不是“错了三个”,你只是**“漏”**了(3)“设计优化”(图纸会审)这一步!你背的“逻辑 -> 物理 -> 实施”是。

2025-11-04 22:16:12 944

原创 OSPF错题笔记:区域与LSA完全解析

你太棒了!你这个要求非常好,这说明你是一个治学非常严谨的学习者!你说的,我上次为了简化比喻,确实“故意”跳过了 LSA 4,但。那么,遵命!我们把你的“补充材料”(尤其是 LSA 4 和 LSA 7)进我们的“餐厅”比喻,为你输出这份**“终极完整版”**的 OSPF 区域总结,作为我们今天()学习的完美句号!

2025-11-04 17:05:44 920

原创 错题笔记总结:PCI与PCIe:并行与串行

PCI是并行,PCIe是串行,我还是不够严谨,我以为带e也是并行嘞哈哈!你把“魔鬼”给揪出来了!你这个“以为”,因为它们的名字 90% 都是一样的!但那个 “e” (Express) 恰恰就是“”的标志!

2025-11-04 16:46:10 705

原创 错题笔记:“SmartLink”是“STP”的“超级升级版”

STP (Spanning Tree Protocol, 生成树)。我们来用一个“最简单”的比喻,你 1 分钟就懂了:1. 目标(它们要解决同一个问题):2. “老”办法:STP (生成树)3. “新”办法:SmartLink (智能链路)总结一下:这就是 SmartLink“智能” (Smart) 的地方!切换的“后遗症”:SmartLink 的“智能”解决方案 (D 选项):所以: D 选项(更新 MAC/ARP)不是“BUG”,而是 SmartLink “解决”黑洞的“核心功能”!这下你是不是彻底把

2025-11-04 16:34:21 408

原创 OSPF路由表 错题总结

你这个问题问得好!这道题是 OSPF 路由表里最“送分”但也最容易“看走眼”的题!你很可能被第一眼看到的 (总网络 4) 给迷惑了,所以可能会选 C (4)。但“标准答案” B (3) 是 100% 正确的。我们来看一下“破案”的关键:这道题问的是“区域内部网络”(Intra-Area) 的总数。在 OSPF 的世界里,路由被严格分成了 4 种类型。你不需要去看上面复杂的路由表,你只需要看华为路由器在最下面为你提供的“总结报告”:这行“总结报告”就是这道题的“标准答案”!这道题问你“区域内部网络”(Int

2025-11-04 15:23:24 274

原创 揭秘:为什么大多数网站都以www开头?

你观察到的现象是 100% 正确的!

2025-11-03 22:12:05 1334

原创 存储连接方式与RAID重构解析,2018年5月第二题

好的,这是一道非常典型的网络架构和存储知识的综合题。我们根据你提供的拓扑图和问题,一步步来分析!

2025-11-03 22:05:21 349

原创 防火墙进化史:从看门到读心

根据防火墙的“进化”和它们工作的“OSI 层面”,我们通常可以把它们分为 3 个主要类别:总结一下:这个“进化”路径就是:

2025-11-03 11:31:40 331

原创 网工错题笔记

曼彻斯特编码 (Manchester Encoding)自同步(不需要额外时钟信号)。靠比特位中间的电平跳变来同步时钟,并用跳变方向(如:高→低=1, 低→高=0)来区分 0 和 1。快速以太网标准 (100Mbps)使用2 对5 类 (Cat 5)双绞线。使用4 对3 类 (Cat 3)双绞线(为了兼容老线缆)。使用光纤。8 芯网线 (T568B/A)百兆(100BASE-TX)只用 1、2、3、6(橙、绿)两对线。但我们全打满 8 芯,是为了向前兼容千兆网 (1000BASE-T)

2025-11-02 17:01:59 823

原创 路由器存储器揭秘:FLASH、NVRAM、ROM与DRAM

存储器掉电是否丢失可否修改存放内容类比FLASH❌ 不丢失✅ 可修改IOS、备份配置硬盘NVRAM❌ 不丢失✅ 可修改配置仓库ROM❌ 不丢失❌ 固定引导程序、诊断程序BIOSDRAM✅ 会丢失✅ 可修改路由表、临时配置内存ROM 是“启动用”,DRAM 是“运行用”。FLASH 是“系统仓库”,NVRAM 是“配置仓库”。

2025-10-31 12:06:51 599

原创 GitHub Release 发布流程速查表

访问:https://github.com/YOUR_USERNAME/ZDTrans/releases/new。:打包 → 压缩 → 提交 → Tag → Release ✅。

2025-10-29 12:39:51 568

原创 更新日志:QScrollArea嵌套布局问题解决

│ 项目 │ 问题代码 │ 正常代码 │。│ 布局嵌套 │ 3层嵌套 │ 1层简单布局 │。│ 控件高度 │ 自动计算 │ 固定高度 setFixedHeight() │。│ 空间填充 │ addStretch() 在嵌套中 │ addStretch() 在主布局 │。要不要用测试窗口的简单布局替换现在的复杂布局?测试窗口为什么能工作?

2025-10-29 12:07:55 375

原创 YOLOv8模型结构深度解析笔记

该YOLOv8.0n配置文件定义了网络结构和特征金字塔层级。主干网络包含5个下采样阶段(P1-P5),对应2-32倍下采样,其中P3(8x)检测小物体,P4(16x)中等物体,P5(32x)大物体。头部网络通过上采样和特征融合实现多尺度检测,最终输出P3/P4/P5三个检测层。深度和宽度缩放因子分别为0.33和0.25,用于控制网络复杂度。各阶段通过卷积和C2f模块构建,形成高效的特征提取架构。

2025-10-28 09:31:08 345

原创 如何高效学习的讨论———编程等等

结合你(作为研究生)和AI时代的特点,我认为最高效的学习方式是“以项目为导向的螺旋式上升”第1步:确定一个“有体感”的最小化目标(Mini-Project)不是“精通Python”,而是“复现一篇论文”、“跑通一个GitHub项目”、“做一个能识别猫狗的Web API”。这个目标必须是具体的、可执行的。第2步:快速搭建“脚手架”,并撞上“第一堵墙”不要试图学完所有东西再开始。直接上手。你很快会遇到问题,正如你所说:“环境配不好”、“包冲突了”、“import报错”、“数据cat一下看看长啥样?

2025-10-26 16:26:35 1281

原创 图像滤波:中值、均值、高斯快速区分法

英文名别名:脉冲噪声表现形式黑色像素点(胡椒噪声)白色像素点(盐噪声)出现位置:随机分布在图像的各个区域,尤其在边缘或暗/亮区域更明显成因图像传感器故障数据传输错误存储或压缩过程中的干扰。

2025-10-26 16:24:31 734

原创 关键词提取常用算法

关键词提取常用算法包括 TF-IDF、TextRank、LDA、Word2Vec 聚类、KeyBERT 等,每种方法适用于不同类型的文本和任务场景。Word2Vec 聚类提取关键词KeyBERT(基于 BERT 的关键词提取)

2025-10-24 16:45:59 347

原创 MAC Flood与ARP Flood攻击区别详解

项目MAC FloodARP Flood攻击目标交换机的MAC地址表主机/网关的ARP表危害广播泛滥、嗅探通信通信中断、ARP欺骗防护重点限制MAC学习、端口安全ARP速率限制、ARP验证机制涉及设备二层交换机三层设备或主机。

2025-10-24 16:45:34 252

原创 华为交换机防网关冲突与网关保护功能对比

✅ 如果你是在网关设备上部署,建议启用防网关冲突功能✅ 如果你是在接入层部署,建议启用网关保护功能✅ 两者可以联合使用,形成网关防护闭环在华为交换机或路由器上,静态绑定 ARP 表项的目的是将某个 IP 地址与其对应的 MAC 地址固定绑定,防止被 ARP 欺骗或篡改。这在启用防网关冲突、ARP 安全等功能时非常关键。

2025-10-24 11:46:54 323

原创 DDoS攻击总结

如果你正在做网络安全实验或设计防护方案,我可以帮你画出攻击分类图或生成一份防御策略清单。是否需要我帮你可视化一下这些攻击的分层结构?

2025-10-24 11:45:32 488

原创 【面向小白】git rebase全面总结,什么时候用rebase

🎯 什么时候用 Rebase?(实战指南)

2025-10-21 22:56:11 806

原创 网易邮箱群发程序分享|python|2025.10月可用

之前有一个一直名单,群发邮件的需求。我写了一个程序,

2025-10-17 19:56:25 315

原创 【开放词汇检测综述论文精读】—A Survey on Open-Vocabulary Detection and Segmentation: Past, Present, and Future

作为最基础的场景理解任务,目标检测和分割在深度学习时代取得了巨大的进展。由于昂贵的手动标注成本,现有数据集中的标注类别通常规模较小且预先定义好,即最先进的全监督检测器和分割器无法在封闭词汇集之外进行泛化。为了解决这一限制,在过去几年中,学术界越来越关注开放词汇检测(Open-Vocabulary Detection,OVD)和分割(Open-Vocabulary Segmentation,OVS)。这里的“开放词汇”指的是模型能够对预先定义类别之外的对象进行分类。我们发现,弱监督信号的许可和使用。

2025-09-21 10:53:37 883

原创 计算机管理技术-SNMP

本题的症结在于。

2025-09-04 09:56:28 1173

原创 文件传输工具rsync|rust开发环境安装|Ascend实验相关命令

本文提供了Linux系统下文件传输和Rust开发环境的实用命令集。文件传输部分包含rsync和scp的常用命令,支持本地与远程服务器间的文件同步和传输。Rust环境部分提供了版本检查、工具链更新、VS Code安装及常用Rust组件(如rustfmt、clippy)的配置指南,还推荐了cargo的实用扩展工具(cargo-edit、cargo-watch等)。这些命令可帮助开发者高效进行文件管理和Rust项目开发。

2025-09-04 09:55:19 242

原创 权重迁移笔记

== 调试信息 ===还有 593 个权重层…

2025-08-15 09:14:54 642

深度卷积神经网络在大规模图像分类中的应用研究-基于ImageNet数据集

内容概要:本文详细介绍了作者团队在2012年 ImageNet LSVRC 大规模视觉识别竞赛中,使用深度卷积神经网络(CNN)进行图像分类的研究成果。网络包含五层卷积层和三层全连接层,采用ReLU非线性激活函数、重叠池化技术和Dropout正则化方法。通过高效的GPU实现和大数据集的应用,显著降低了分类错误率。文章详细阐述了网络架构的设计、训练策略以及减少过拟合的方法。 适合人群:从事计算机视觉和深度学习领域的研究人员、工程师和技术爱好者。 使用场景及目标:① 使用大型数据集(如ImageNet)进行图像分类研究;② 探索卷积神经网络在视觉识别任务中的性能提升;③ 研究不同技术(如ReLU、Dropout等)对网络性能的影响。 阅读建议:此资源详细介绍了深度卷积神经网络的设计和训练方法,特别是针对大规模图像分类任务。阅读时可以重点关注网络架构设计、训练技巧和减少过拟合的方法,以便应用于实际项目中。

2024-12-25

ZSD-YOLO论文原文

论文

2024-12-25

线性概率评估结果pdf

线性概率评估结果pdf

2024-12-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除