初始感受
学数学,吃透概念理论确实是基本的,但更要能精确表达出来,数学表达式,在此之前其实没什么接触,在闵老师的介绍之下,对论文的书写是必不可少,所以从陌生到熟悉到掌握,这个流程得一步一脚印,踏实走,走出舒适区,把文字转化成符号,转变心态,目前的问题就是不熟悉各字体的符号,相同字体的不同形态的使用,上下标什么时候标识等基本的,所以一边用一边学,照猫画虎。
一、幂集
- A = { 3 , 5 } , \mathbf{A}=\{3,5\}, A={3,5},则 2 A = { ∅ , { 3 } , { 5 } , { 3 , 5 } } . 2^{\mathbf{A}}=\{\emptyset,\{3\},\{5\},\{3,5\}\} . 2A={∅,{3},{5},{3,5}}.
- 2 ∅ = { ∅ } . 2^\emptyset=\{\emptyset\}. 2∅={∅}.
-
A
=
{
5
,
6
,
7
,
8
,
9
}
\mathbf{A}=\{5,6,7,8,9\}
A={5,6,7,8,9}的相同表达:
枚举法: [ 5..9 ] = { 5 , 6 … , 9 } . [5..9]=\{5,6\dots,9\}. [5..9]={5,6…,9}.
谓词法: { x ∣ x ∈ N + , 5 ≤ x ≤ 9 } . \{x|x\in{N^+},5\le{x}\le{9}\}. {x∣x∈N+,5≤x≤9}.
二、矩阵乘法
自己给数据,做一个
3
×
2
3\times2
3×2与
2
×
4
2\times4
2×4的矩阵乘法。
A
=
[
2
3
3
1
2
4
]
\mathbf{A}=\begin{bmatrix} 2 & 3 \\ 3 & 1 \\ 2&4 \end{bmatrix}
A=
232314
B = [ 1 2 2 3 1 2 3 5 ] \mathbf{B}=\begin{bmatrix} 1 & 2 &2 &3\\ 1 & 2 & 3 & 5 \end{bmatrix} B=[11222335]
A × B = [ 5 10 13 21 4 8 9 14 6 12 16 26 ] \mathbf{A}\times\mathbf{B}=\begin{bmatrix} 5 & 10 &13 &21\\ 4 & 8 & 9 & 14 \\ 6 & 12 & 16 & 26\end{bmatrix} A×B= 5461081213916211426
三.论文中的符号问题
- 表示对象集合 X = { x i } i = 1 n \mathbf{X}=\{\mathbf{x}_i\}_{i=1}^n X={xi}i=1n或者是 X = { x i } i = 0 n − 1 \mathbf{X}=\{\mathbf{x}_i\}_{i=0}^{n-1} X={xi}i=0n−1
- 文中的符号系统应保证一致性、完备性 . m {m} m与 m \mathbf{m} m是不同的.
- B = { b i } i = 1 N ∈ { − 1 , 1 } q × N \mathbf{B}=\{b_i\}_{i=1}^N\in\{-1,1\}^{q\times{N}} B={bi}i=1N∈{−1,1}q×N
- X ( m ) \mathbf{X}^{(m)} X(m)与下文 X ( m ) \mathbf{X}_{(m)} X(m)