TensorFlow中compute_gradients函数返回列表部分为None

在TensorFlow中遇到compute_gradients计算梯度时返回列表中部分变量的梯度为None。原因是该函数会计算所有变量的梯度,而不仅仅是关注的变量。解决方法包括指定关注的var_list或筛选出非None的梯度进行后续操作。参考资源包括相关博客和GitHub讨论。
摘要由CSDN通过智能技术生成

TensorFlow中compute_gradients函数返回列表部分为None

tensorflow在使用opt.compute_gradients函数传入loss计算梯度时,不知道为什么返回的列表中,部分的变量对中的梯度为None。

// 原本的compute_gradients代码
grads = opt.compute_gradients(loss)

后经查阅资料后发现,compute_gradients函数会计算所有的variables的梯度,并不只只是我所关心的variables,然后其他的variables返回的梯度可能为None,所以最后产生的列表中部分变量梯度为None,修改方式:

grads = opt.compute_gradients(loss, [var_list])

或者如果实在无法找出我们关心的var_list

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值