Google最新生图模型Gemini-2.0-Flash-Exp免费用

Google发布新生图模型

Google释放出最新生图模型,在发布说明中提到:

2025年3月12日

在 Gemini-2.0-Flash-Exp 中发布原生图像输出功能

  • Gemini 2.0 Flash Experimental 模型发布,支持原生图像输出功能。
  • 开发者能够使用 Gemini 进行图像输出和编辑。
  • 模型信息
    在这里插入图片描述
    网友试用后,评价都不错。重点是可以免费使用,使用方式见下文介绍。

通过Google AI Studio使用

通过Google AI Studio可以免费交互式使用(包括此模型外多种模型)。关于AI Studio的申请,应该有Google的账户就可以登录使用,并能在Studio中生成API key以及下载示例代码。

  • 在Studio的右侧“Model”处选择“Gemini 2.0 Flash (Image Generation) Experimental”。
  • 在“Output format”处选择"Images and text“。
  • 以输入提示词“请绘制一个小公园的初春下雪场景,场景中需要小径、有树木等,还有小亭子中国元素为例,经过多几轮“调教”还是满足我想要的效果。

Google AI Studio中图片生成过程
各位看官可自己试用,生图,修图。
注:AI Studio中生成图片左下角,会带Gemini的图标。

通过API在代码中生图

除了使用AI Studio之外,还可以通过API来调用“Gemini 2.0 Flash Experimental”模型生成图片,编辑图片。

  • 首先要有API key
    生成方式参见Get API key
    生成Google API key

  • 其次使用Google SDK编码处理
    可以从 AI Studio右上角“Get code”拿到示例代码,支持多种语言,本文以“python”为例。
    查看Google SDK的示例代码

  • 环境准备及执行
    以下代码是在示例代码上做了简单修改,可以根据提示词生成图片,并保存到本地文件。

	# python>=3.12版本
	## install google ai sdk 
	pip install google-genai
	
	# 国内访问需要设置代理
	## 注意环境变量一定是小写https_proxy,不能大写,不然不生效
	## windows (powershell)
	$env:https_proxy="http://your_host:port"
	## macos/linux
	export https_proxy="http://your_host:port"
	
	# 设置API KEY环境变量
	## windows (powershell)
	$env:GEMINI_API_KEY='your-key'
	## macos/linux
	export GEMINI_API_KEY=your-key

	# 执行
	python gemini-image-gen.py -p "your prompt" -o your-image-save-file
  • 源代码(命名为gemini-image-gen.py)
import base64
import os
import argparse
from google import genai
from google.genai import types


def save_binary_file(file_name, data):
    """保存二进制文件

    Args:
        file_name (str): 文件保存路径
        data (bytes): 二进制数据
    """
    f = open(file_name, "wb")
    f.write(data)
    f.close()


def generate(prompt: str, output_file: str):
    """生成图片

    Args:
        prompt (str): 提示词
        output_file (str): 输出文件路径
    
    Raises:
        ValueError: 当GEMINI_API_KEY环境变量未设置时抛出
    """
    api_key = os.environ.get("GEMINI_API_KEY")
    if not api_key:
        raise ValueError(
            "请设置GEMINI_API_KEY环境变量。可以通过以下方式设置:\n"
            "Windows PowerShell: $env:GEMINI_API_KEY='your-key'\n"
            "Windows CMD: set GEMINI_API_KEY=your-key\n"
            "Linux/Mac: export GEMINI_API_KEY=your-key"
        )

    client = genai.Client(api_key=api_key)

    contents = [
        types.Content(
            role="user",
            parts=[types.Part.from_text(text=prompt)],
        ),
    ]
    generate_content_config = types.GenerateContentConfig(
        temperature=1,
        top_p=0.95,
        top_k=40,
        max_output_tokens=8192,
        response_modalities=[
            "image",
            "text",
        ],
        response_mime_type="text/plain",
    )

    for chunk in client.models.generate_content_stream(
        model="gemini-2.0-flash-exp",
        contents=contents,
        config=generate_content_config,
    ):
        if not chunk.candidates or not chunk.candidates[0].content or not chunk.candidates[0].content.parts:
            continue
        if chunk.candidates[0].content.parts[0].inline_data:
            save_binary_file(
                output_file, chunk.candidates[0].content.parts[0].inline_data.data
            )
            print(
                "File of mime type"
                f" {chunk.candidates[0].content.parts[0].inline_data.mime_type} saved"
                f" to: {output_file}"
            )
        else:
            print(chunk.text)


def main():
    parser = argparse.ArgumentParser(
        description="使用 Gemini 2.0 生成图片",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
使用示例:
    # 生成一个下雪的公园场景
    python gemini-image-gen.py -p "请绘制一个小公园的下雪场景,场景中需要有树木、小亭子等中国元素" -o snowing-park.png
    
    # 生成一个春天的花园场景
    python gemini-image-gen.py -p "画一个春天的花园,有盛开的樱花和小溪" -o spring-garden.png

注意:
    1. 使用前请确保已设置GEMINI_API_KEY环境变量
    2. 生成的图片质量取决于提示词的质量
    3. 如果生成失败,可以尝试修改提示词后重试
""",
    )
    parser.add_argument(
        "-p", "--prompt", 
        required=True,
        help="用于生成图片的提示词"
    )
    parser.add_argument(
        "-o", "--output",
        required=True,
        help="生成图片的保存路径"
    )

    args = parser.parse_args()
    generate(args.prompt, args.output)


if __name__ == "__main__":
    main()

  • 生成图片示例
	# 执行以下命令
	 python gemini-image-gen.py -p "画一个春天的花园,有盛开的樱花和小溪,画面不要全部被景物充满,色彩也不要太艳丽,但要与实物接近" -o spring-garden.png
  • 一次性输出结果,看起来还可以
    API生成的春天小公园
    注:当前API生成的图片还没有Gemini的图标。

总结

这是Google在生成式AI图像领域的重要更新,免费使用的特点使其对开发者和普通用户都很有吸引力。本文介绍了不同的使用方法,包括通过Google AI Studio的直接使用和通过API的编程调用,并提供了实际操作的示例。各位看官可以自己试验,欢迎分享。

### Ollama DeepSeek-R1 1.5B API 功能特性 Ollama DeepSeek-R1 1.5B 是一款专注于自然语言处理的任务型模型,其API设计旨在提供离线环境下的高效性能和服务。该版本的API不支持联网问答功能[^1]。 #### 支持的模型列表 对于Ollama平台而言,除了DeepSeek-R1 1.5B之外,还可能兼容其他类型的预训练模型,具体取决于官方文档中的说明。然而,在提及的支持范围内,并未特别指出Gemini-2.0-flash 或 Perplexity作为默认选项被包含其中。 关于Chatbox AI models, 这一工具允许用户通过浏览器访问并配置不同的AI服务提供商及其对应的主机地址与特定模型名称来实现交互体验优化的目的[^3]。 #### 功能对比分析 当比较不同API之间的能力时,可以考虑以下几个方面: - **网络依赖度**:如前所述,Ollama DeepSeek-R1 1.5B 的API不允许直接连接互联网获取实时数据;而某些其他的API可能会具备此功能。 - **集成灵活性**:像VSCode这样的开发环境中集成了Cline、Ollama以及DeepSeek-R1辅助编程的应用场景展示了高度灵活的服务组合方式[^2]。 - **易用性和可定制化程度**:基于Web界面操作简便性的考量,Chatbox提供了图形化的设置向导帮助快速上手使用各种第三方提供的AI解决方案。 ```python # 示例代码展示如何调用本地部署的OLLAMA DEEPEEK R1 1.5B 模型进行推理预测 import requests def query_local_model(prompt_text): url = "http://localhost:8000/predict" payload = {"input": prompt_text} response = requests.post(url, json=payload).json() return response['output'] prompt_example = "What is the capital of France?" result = query_local_model(prompt_example) print(f"The model's answer to '{prompt_example}' is {result}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值