题目描述
2048 年,第三十届 CSP 认证的考场上,作为选手的小明打开了第一题。这个题的样例有 nn 组数据,数据从 1 \sim n1∼n 编号,ii 号数据的规模为 a_iai。
小明对该题设计出了一个暴力程序,对于一组规模为 uu 的数据,该程序的运行时间为 u^2u2。然而这个程序运行完一组规模为 uu 的数据之后,它将在任何一组规模小于 uu 的数据上运行错误。样例中的 a_iai 不一定递增,但小明又想在不修改程序的情况下正确运行样例,于是小明决定使用一种非常原始的解决方案:将所有数据划分成若干个数据段,段内数据编号连续,接着将同一段内的数据合并成新数据,其规模等于段内原数据的规模之和,小明将让新数据的规模能够递增。
也就是说,小明需要找到一些分界点 1 \leq k_1 \lt k_2 \lt \cdots \lt k_p \lt n1≤k1<k2<⋯<kp<n,使得
\sum_{i=1}^{k_1} a_i \leq \sum_{i=k_1+1}^{k_2} a_i \leq \cdots \leq \sum_{i=k_p+1}^{n} a_ii=1∑k1ai≤i=k1+1∑k2ai≤⋯≤i=kp+1∑nai
注意 pp 可以为 00 且此时 k_0 = 0k0=0,也就是小明可以将所有数据合并在一起运行。
小明希望他的程序在正确运行样例情况下,运行时间也能尽量小,也就是最小化
(\sum_{i=1}^{k_1} a_i)^2 + (\sum_{i=k_1+1}^{k_2} a_i)^2 + \cdots + (\sum_{i=k_p+1}^{n} a_i)^2(i=1∑k1ai)2+(i=k1+1∑k2ai)2+⋯+(i=kp+1∑nai)2
小明觉得这个问题非常有趣,并向你请教:给定 nn 和 a_iai,请你求出最优划分方案下,小明的程序的最小运行时间。
输入格式
由于本题的数据范围较大,部分测试点的