P5665 [CSP-S2019] 划分

小明在CSP认证考试中遇到一道题目,他的暴力程序对不同规模数据的运行时间是数据规模的平方。为了在不修改程序的情况下正确运行所有样例,他计划将数据划分为若干连续段,合并段内数据并确保段间规模递增。小明的目标是最小化所有段规模平方和。问题要求找出最优划分方案及其最小运行时间。输入包括数据规模、样例规模和生成方式,输出是相应的时间。
摘要由CSDN通过智能技术生成

题目描述

2048 年,第三十届 CSP 认证的考场上,作为选手的小明打开了第一题。这个题的样例有 nn 组数据,数据从 1 \sim n1∼n 编号,ii 号数据的规模为 a_iai​。

小明对该题设计出了一个暴力程序,对于一组规模为 uu 的数据,该程序的运行时间为 u^2u2。然而这个程序运行完一组规模为 uu 的数据之后,它将在任何一组规模小于 uu 的数据上运行错误。样例中的 a_iai​ 不一定递增,但小明又想在不修改程序的情况下正确运行样例,于是小明决定使用一种非常原始的解决方案:将所有数据划分成若干个数据段,段内数据编号连续,接着将同一段内的数据合并成新数据,其规模等于段内原数据的规模之和,小明将让新数据的规模能够递增。

也就是说,小明需要找到一些分界点 1 \leq k_1 \lt k_2 \lt \cdots \lt k_p \lt n1≤k1​<k2​<⋯<kp​<n,使得

\sum_{i=1}^{k_1} a_i \leq \sum_{i=k_1+1}^{k_2} a_i \leq \cdots \leq \sum_{i=k_p+1}^{n} a_ii=1∑k1​​ai​≤i=k1​+1∑k2​​ai​≤⋯≤i=kp​+1∑n​ai​

注意 pp 可以为 00 且此时 k_0 = 0k0​=0,也就是小明可以将所有数据合并在一起运行。

小明希望他的程序在正确运行样例情况下,运行时间也能尽量小,也就是最小化

(\sum_{i=1}^{k_1} a_i)^2 + (\sum_{i=k_1+1}^{k_2} a_i)^2 + \cdots + (\sum_{i=k_p+1}^{n} a_i)^2(i=1∑k1​​ai​)2+(i=k1​+1∑k2​​ai​)2+⋯+(i=kp​+1∑n​ai​)2

小明觉得这个问题非常有趣,并向你请教:给定 nn 和 a_iai​,请你求出最优划分方案下,小明的程序的最小运行时间。

输入格式

由于本题的数据范围较大,部分测试点的 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值