读论文

文本分类:

  • 《Bag of Tricks for Efficient Text Classification》,fastText文本分类
  • 《Convolutional Neural Networks for Sentence Classification》,CNN文本分类经典论文
  • 《A Sensitivity Analysis of (and Practitioners’ Guide to)
    Convolutional Neural Networks for Sentence Classification》,CNN文本分类,分析调参
  • 《Recurrent Convolutional Neural Networks for Text Classification》,RCNN文本分类
# RCNN
left_train_word_ids = [[len(vocab)] + x[:-1] for x in X_train_word_ids]
left_test_word_ids = [[len(vocab)] + x[:-1] for x in X_test_word_ids]
right_train_word_ids = [x[1:] + [len(vocab)] for x in X_train_word_ids]
right_test_word_ids = [x[1:] + [len(vocab)] for x in X_test_word_ids]

left_train_padded_seqs = pad_sequences(left_train_word_ids, maxlen=20)
left_test_padded_seqs = pad_sequences(left_test_word_ids, maxlen=20)
right_train_padded_seqs = pad_sequences(right_train_word_ids, maxlen=20)
right_test_padded_seqs = pad_sequences(right_test_word_ids, maxlen=20)

document = Input(shape=(None,), dtype='int32')
left_context = Input(shape=(None,), dtype='int32')
right_context = Input(shape=(None,), dtype='int32')

embedder = Embedding(len(vocab) + 1, 300, input_length=20)
doc_embedding = embedder(document)
l_embedding = embedder(left_context)
r_embedding = embedder(right_context)

forward = LSTM(256, return_sequences=True)(l_embedding)
backward = LSTM(256, return_sequences=True, go_backwards=True)(r_embedding)
together = concatenate([forward, doc_embedding, backward], axis=2)
semantic = TimeDistributed(Dense(128, activation='tanh'))(together)
pool_rnn = Lambda(lambda x: K.max(x, axis=1), output_shape=(128,))(semantic)
output = Dense(10, activation='softmax')(pool_rnn)
model = Model(inputs=[document, left_context, right_context], outputs=output)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
  • 《Hierarchical Attention Networks for Document Classification》,HAN文本分类
  • 《Enriching Word Vectors with Subword Information》,word vector from subword

自然语言推理:

  • 《A Decomposable Attention Model for Natural Language Inference》

这里写图片描述

这里写图片描述

在这里插入图片描述

  • 《Semantic Sentence Matching with Densely-connected Recurrent and Co-attentive Information》,DRCN(Densely-connected Recurrent and Co-attentive neural Network)

这里写图片描述

seq2seq

  • 《Attention Is All You Need》

embedding

  • 《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》
  • 《Frustratingly Easy Meta-Embedding – Computing Meta-Embeddings by Averaging Source Word Embeddings》
  • 《Dynamic Meta-Embeddings for Improved Sentence Representations》
  • 《Deep contextualized word representations》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值