集成学习(Ensemble Learning)

思想

 适用情形

常用的机器学习思想

Bagging

Bagging 训练过程

Bagging 预测过程

随机森林(Random Forest)

概述

注意

对于权重,一般都是把错误率,正确率,MSE,MAE,距离等指标进行转化得到的。

Extra Tree

TRTE

Isolation Forest

随机森林的思考

提升学习 Boosting

Adaboost

 Adaboost样本加权

公式推导

Adaboost构建过程

Adaboost 案例

初始时:

第一轮:

第二轮:

第三轮:

 案例总结:

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值