二维0-1背包问题
问题描述
给定 n n n种物品和一背包。物品 i i i的重量是 w i w_i wi,体积是 b i b_i bi,其价值为 v i v_i vi,背包的容量为 c c c,容积为 d d d。问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品是,对每种物品i只能有两种选择,即装入背包和不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品 i i i。尝试设计一个解决此问题的动态规划算法。
算法思路与代码实现
为了描述的方便(同时贴合我自己的代码),对一些表示符号稍作修改
物品i的重量表示为wi, 体积表示为bi,价值为vi
背包总容量为W,容积为B。(比较对应)
方法一:普通动归方法
从n个物品中的第n个物品开始考虑。设dp[i] [j] [k]是可选物品为i,i+1,…,n;背包容量为j,背包容积为k时的二维0-1背包问题的最优值(即最大价值数)
则状态转移方程如下:
d
p
[
i
]
[
j
]
[
k
]
=
{
m
a
x
{
d
p
[
i
+
1
]
[
j
]
[
k
]
,
d
p
[
i
+
1
]
[
j
−
w
i
]
[
k
−
b
i
]
+
v
i
}
j
≥
w
i
,
0
≤
i
≤
n
−
1
d
p
[
i
+
1
]
[
j
]
[
k
]
0
≤
j
<
w
i
,
0
≤
i
≤
n
−
1
v
n
j
≥
w
n
,
i
=
n
0
0
≤
j
<
w
n
,
i
=
n
dp[i][j][k]= \left\{ \begin{aligned} &max\{dp[i+1][j][k],\ dp[i+1][j-w_i][k-b_i]+v_i\} &\quad j\geq w_i\ , 0\leq i \leq n-1\\ &dp[i+1][j][k]&\quad 0\leq j<w_i\ ,0\leq i \leq n-1\\ &v_n&\quad j\geq w_n\ , i=n\\ &0&\quad 0\leq j<w_n\ , i=n \end{aligned} \right.
dp[i][j][k]=⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧max{dp[i+1][j][k], dp[i+1][j−wi][k−bi]+vi}dp[i+1][j][k]vn0j≥wi ,0≤i≤n−10≤j<wi ,0≤i≤n−1j≥wn ,i=n0≤j<wn ,i=n
在该问题下,i∈[1,n];j∈[0,W];k∈[0,B];最终问题转化为求dp[1] [W] [B]
至于得到具体背包内的物品,可以根据计算得出的dp[i] [j] [k]求出。具体做法是i从1到n变化,对比dp[i] [j] [k]和dp[i+1] [j] [k]的值,如果相同说明第i个物品没有被放入包中,让i=i+1继续做对比;如不相同则说明该物品放入包中,让j和k中的值减去第i个物品的重量和体积,再让i=i+1继续做对比,最终得到背包内装的所有物品。
从n个物品中的第1个物品开始考虑。设dp[i] [j] [k]是可选物品为1,2,…,i;背包容量为j,背包容积为k时的二维0-1背包问题的最优值(即最大价值数)
则状态转移方程如下:
d
p
[
i
]
[
j
]
[
k
]
=
{
m
a
x
{
d
p
[
i
−
1
]
[
j
]
[
k
]
,
d
p
[
i
−
1
]
[
j
−
w
i
]
[
k
−
b
i
]
+
v
i
}
j
≥
w
i
,
1
≤
i
≤
n
d
p
[
i
−
1
]
[
j
]
[
k
]
0
≤
j
<
w
i
,
1
≤
i
≤
n
v
1
j
≥
w
1
,
i
=
1
0
0
≤
j
<
w
1
,
i
=
1
dp[i][j][k]= \left\{ \begin{aligned} &max\{dp[i-1][j][k],\ dp[i-1][j-w_i][k-b_i]+v_i\} &\quad j\geq w_i\ , 1\leq i \leq n\\ &dp[i-1][j][k]&\quad 0\leq j<w_i\ ,1\leq i \leq n\\ &v_1&\quad j\geq w_1\ , i=1\\ &0&\quad 0\leq j<w_1\ , i=1 \end{aligned} \right.
dp[i][j][k]=⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧max{dp[i−1][j][k], dp[i−1][j−wi][k−bi]+vi}dp[i−1][j][k]v10j≥wi ,1≤i≤n0≤j<wi ,1≤i≤nj≥w1 ,i=10≤j<w1 ,i=1
在该问题下,i∈[1,n];j∈[0,W];k∈[0,B];最终问题转化为求dp[n] [W] [B]
如果我们让i=0表示没有可选物品,则可以进一步化简状态转移方程,变为如下形式:
d
p
[
i
]
[
j
]
[
k
]
=
{
m
a
x
{
d
p
[
i
−
1
]
[
j
]
[
k
]
,
d
p
[
i
−
1
]
[
j
−
w
i
]
[
k
−
b
i
]
+
v
i
}
j
≥
w
i
,
0
≤
i
≤
n
d
p
[
i
−
1
]
[
j
]
[
k
]
0
≤
j
<
w
i
,
0
≤
i
≤
n
dp[i][j][k]= \left\{ \begin{aligned} &max\{dp[i-1][j][k],\ dp[i-1][j-w_i][k-b_i]+v_i\} &\quad j\geq w_i\ , 0\leq i \leq n\\ &dp[i-1][j][k]&\quad 0\leq j<w_i\ ,0\leq i \leq n\\ \end{aligned} \right.
dp[i][j][k]={max{dp[i−1][j][k], dp[i−1][j−wi][k−bi]+vi}dp[i−1][j][k]j≥wi ,0≤i≤n0≤j<wi ,0≤i≤n
显然,这样可以为后面的程序编写带来方便。
至于得到具体背包内的物品,可以根据计算得出的dp[i] [j] [k]求出。具体做法是i从n到0变化,对比dp[i] [j] [k]和dp[i-1] [j] [k]的值,如果相同说明第i个物品没有被放入包中,让i=i-1继续做对比;如不相同则说明该物品放入包中,让j和k中的值减去第i个物品的重量和体积,再让i=i-1继续做对比,最终得到背包内装的所有物品。
方法二:空间优化法
在上一种方法的基础上,容易发现每次的dp[i] [j] [k]只与dp[i-1] [j] [k]有关(或者dp[i+1] [j] [k]),这样只要每次重复利用上一轮的计算结果,就可以计算这次的dp[i] [j] [k],也就可以通过循环控制去掉i这一维的空间,循环利用dp[j] [k]的二维空间。从而达到降低空间消耗的目的。
但这么做的会导致难以获取到背包最后具体装的物品。(因为每次计算的dp[i] [j] [k]被覆盖了)
代码1:方法一
从n个物品中的第1个物品开始考虑(从前往后考虑)。
#include<stdio.h>
#include<stdlib.h> // standard_library
// O(n*W*B) + O(n)
int max(int a,int b){
if(a>b)return a;
else return b;
} // 比较大小的函数
int main(){
//声明参数和数据输入
int n; // 物品个数
printf("物品个数 n = "); scanf("%d",&n);
int W; // 背包最大承受重量
int B; // 背包最大容积
int *w = (int*)malloc(sizeof(int)*(n+1)); // 记录物品重量,首位不用
int *b = (int*)malloc(sizeof(int)*(n+1)); // 记录物品体积,首位不用
int *v = (int*)malloc(sizeof(int)*(n+1)); // 记录物品价值,首位不用
int *x = (int*)malloc(sizeof(int)*(n+1)); // 记录背包内存放了哪些物品。0表示没有放,1表示放了。首位不用。
printf("背包最大承受重量 W = "); scanf("%d",&W);
printf("背包最大容积 B = "); scanf("%d",&B);
printf("每个物品的重量wi: ");for(int i=1;i<=n;i++)scanf("%d",&w[i]);
printf("每个物品的体积bi: ");for(int i=1;i<=n;i++)scanf("%d",&b[i]);
printf("每个物品的价值vi: ");for(int i=1;i<=n;i++)scanf("%d",&v[i]);
// 动态规划找最优解
int i,j,k;
//声明并初始化dp[n+1][W+1][B+1]
int ***dp = (int***)malloc(sizeof(int**)*(n+1));
for(int i=0;i<=n;i++){
dp[i] = (int**)malloc(sizeof(int*)*(W+1));
for(int j=0;j<=W;j++){
dp[i][j] = (int*)malloc(sizeof(int)*(B+1));
for(int k=0;k<=B;k++)dp[i][j][k]=0; // 其内元素都置为零,这里同时也完成了第一行的初始化
}
}
for(i=1;i<=n;i++){
for(j=0;j<=W;j++){ //会出现j=w[i]的情况,所以遍历包含必须有j=0,下面k同理
for(k=0;k<=B;k++){
if(j>=w[i] && k>=b[i]){
dp[i][j][k] = max(dp[i-1][j][k], dp[i-1][j-w[i]][k-b[i]]+v[i]);
}else{
dp[i][j][k] = dp[i-1][j][k];
}
}
}
}
// 打印dp[n][W][B],即问题的最优值
printf("maxValue = %d\n",dp[n][W][B]);
// 计算x[i],即分析最终背包内有哪些物品
for(i=n,j=W,k=B; i>0; i--){
if(dp[i][j][k]==dp[i-1][j][k]){ // 没有变化,说明没有选取
x[i]=0;
}else{
x[i]=1; // 有变化,说明该物品被选取了
j -= w[i];
k -= b[i];
}
}
printf("x[i] = ");
for(int i=1;i<=n;i++){
printf("%d ",x[i]);
}puts("");
return 0;
}
/* 一个测试用例如下
5
10
10
2 2 6 5 4
2 2 6 5 4
6 3 5 4 6
*/
从n个物品中的第n个物品开始考虑(从后往前考虑)。
#include<stdio.h>
#include<stdlib.h> // standard_library
// O(n*W*B) + O(n)
int max(int a,int b){
if(a>b)return a;
else return b;
}// 比较大小的函数
int main(){
//声明参数和数据输入
int n; // 物品个数
printf("物品个数 n = "); scanf("%d",&n);
int W; // 背包最大承受重量
int B; // 背包最大容积
int *w = (int*)malloc(sizeof(int)*(n+1)); // 记录物品重量,首位不用
int *b = (int*)malloc(sizeof(int)*(n+1)); // 记录物品体积,首位不用
int *v = (int*)malloc(sizeof(int)*(n+1)); // 记录物品价值,首位不用
int *x = (int*)malloc(sizeof(int)*(n+1)); // 记录背包内存放了哪些物品。0表示没有放,1表示放了。首位不用。
printf("背包最大承受重量 W = "); scanf("%d",&W);
printf("背包最大容积 B = "); scanf("%d",&B);
printf("每个物品的重量wi: ");for(int i=1;i<=n;i++)scanf("%d",&w[i]);
printf("每个物品的体积bi: ");for(int i=1;i<=n;i++)scanf("%d",&b[i]);
printf("每个物品的价值vi: ");for(int i=1;i<=n;i++)scanf("%d",&v[i]);
// 动态规划找最优解
int i,j,k;
//声明并初始化dp[n+1][W+1][B+1]
int ***dp = (int***)malloc(sizeof(int**)*(n+1));
for(int i=0;i<=n;i++){
dp[i] = (int**)malloc(sizeof(int*)*(W+1));
for(int j=0;j<=W;j++){
dp[i][j] = (int*)malloc(sizeof(int)*(B+1));
for(int k=0;k<=B;k++)dp[i][j][k]=0; // 其内元素都置为零
}
}
// 初始化i=n的情况
for(j=0;j<=W;j++){
for(k=0;k<=B;k++){
if(j>=w[n] && k>=b[n]){
dp[n][j][k] = v[n];
}else {
dp[n][j][k] = 0;
}
}
}
for(i=n-1;i>=1;i--){ // 从i=n-1 ... 1
for(j=0;j<=W;j++){ // 会出现j=w[i]的情况,所以遍历包含必须有j=0,下面k同理
for(k=0;k<=B;k++){
if(j>=w[i] && k>=b[i]){
dp[i][j][k] = max(dp[i+1][j][k], dp[i+1][j-w[i]][k-b[i]]+v[i]);
}else{
dp[i][j][k] = dp[i+1][j][k];
}
}
}
}
// 打印dp[1][W][B],即问题的最优值
printf("maxValue = %d\n",dp[1][W][B]); // 不是dp[n][W][B]
// 计算x[i],即分析最终背包内有哪些物品
for(i=1,j=W,k=B; i<n; i++){ //由上到下
if(dp[i][j][k]==dp[i+1][j][k]){ // 没有变化,说明没有选取
x[i]=0;
}else{ // 有变化,说明该物品被选取了
x[i]=1;
j -= w[i];
k -= b[i];
}
} // 以下考虑i=n情况
x[n] = (dp[n][W][B])?1:0;
// 打印x[i]
printf("x[i] = ");
for(int i=1;i<=n;i++){
printf("%d ",x[i]);
}puts("");
return 0;
}
代码2:空间优化法
#include<stdio.h>
#include<stdlib.h> // standard_library
// O(n*W*B) + O(n)
int max(int a,int b){
if(a>b)return a;
else return b;
}
int main(){
//声明参数和数据输入
int n; // 物品个数
printf("物品个数 n = "); scanf("%d",&n);
int W; // 背包最大承受重量
int B; // 背包最大容积
int *w = (int*)malloc(sizeof(int)*(n+1)); // 记录物品重量,首位不用
int *b = (int*)malloc(sizeof(int)*(n+1)); // 记录物品体积,首位不用
int *v = (int*)malloc(sizeof(int)*(n+1)); // 记录物品价值,首位不用
int *x = (int*)malloc(sizeof(int)*(n+1)); // 记录背包内存放了哪些物品。0表示没有放,1表示放了。首位不用。
printf("背包最大承受重量 W = "); scanf("%d",&W);
printf("背包最大容积 B = "); scanf("%d",&B);
printf("每个物品的重量wi: ");for(int i=1;i<=n;i++)scanf("%d",&w[i]);
printf("每个物品的体积bi: ");for(int i=1;i<=n;i++)scanf("%d",&b[i]);
printf("每个物品的价值vi: ");for(int i=1;i<=n;i++)scanf("%d",&v[i]);
// 动态规划找最优解
int i,j,k;
//声明并初始化dp[n+1][W+1][B+1]
int **dp = (int**)malloc(sizeof(int*)*(W+1));
for(int i=0;i<=W;i++){
dp[i] = (int*)malloc(sizeof(int)*(B+1));
for(int j=0;j<=B;j++){
dp[i][j]=0; // 其内元素都置为零
}
}
for(i=1;i<=n;i++){
for(j=W;j>=0;j--){ //会出现j=w[i]的情况,所以遍历包含必须有j=0,下面k同理
for(k=B;k>=0;k--){
if(j>=w[i] && k>=b[i]){
dp[j][k] = max(dp[j][k], dp[j-w[i]][k-b[i]]+v[i]);
}else{
}
}
}
}
printf("maxValue = %d\n",dp[W][B]);
return 0;
}
代码测试
测试用例如下
n = 5; W = 10;B = 10;
wi = {2,2,6,5,4}; // 记录重量
bi = {2,2,6,5,4}; // 记录体积
vi = {6,3,5,4,6}; // 记录价值
方法一:
方法二:
算法心得和复杂度分析
算法复杂度分析:
对于以上的方法,求得最终结果dp[n] [W] [B](或者dp[1] [W] [B],或dp[W] [B]),都经过了求其前面dp[][][] [] []的过程,所以算法复杂度来源于计算状态转移方程dp[i] [j] [k]的次数和计算一次状态转移方程的时间复杂度。计算次数受到物品个数,背包容量和容积的影响,为n*W*B次,而一次计算的时间复杂度显然是是常数级别的。
所以算法总的时间复杂度为O(n*W*B),n为物品个数,W为背包容量(最大承受重量),B为背包容积。
空间复杂度分析:
在优化空间消耗前,需要使用三维数组,空间复杂度为O(n*W*B),优化空间后降低为O(W*B)。
心得体会:
不同的选择考虑方式会有时会带来对编写程序方便。这个问题中,从n个物品中的第1个物品开始考虑(从前往后考虑),可以化简状态转移方程,让程序更加简单。
当每次一组数据的计算方法只依靠上一次的计算数据时,可以不开辟能够保存所有数据的空间大小,而是取每一次所序的空间大小,以此达到减少空间消耗的目的(滚动数组)。并且在算法设计时,必须防止要用于计算的数据被覆盖,在这个问题中体现的就是j必须逆向遍历。同时这么做也会导致计算过程中中间数据的丢失,难以获得到背包最后具体装的物品。
要想让程序能处理动态的数据,需要采用动态分配内存的方法声明dp数组
分享的同时记录学习,有问题欢迎交流指正。
觉得有用的话就点个赞吧!