全排列问题

关于全排列的问题,很多博客已经写的很多了,关于递归求解的思想,大多已经阐述过了。但代码有些让人看不懂,所以我自己写了一个,练习练习。

 

算法思想:

 

          全排列是将一组数按一定顺序进行排列,如果这组数有n个,那么全排列数为n!个。现以{1, 2, 3, 4, 5}为
例说明如何编写全排列的递归算法。


首先看最后两个数4, 5。 它们的全排列为4 5和5 4, 即以4开头的5的全排列和以5开头的4的全排列。
由于一个数的全排列就是其本身,从而得到以上结果。


2、再看后三个数3, 4, 5。它们的全排列为3 4 5、3 5 4、 4 3 5、 4 5 3、 5 3 4、 5 4 3 六组数。
即以3开头的和4,5的全排列的组合、以4开头的和3,5的全排列的组合和以5开头的和3,4的全排列的组合

 

所以得出一个递归的公式,数字1.。。。。m, { perm(m) }为m个数的全排列

{ perm(m) } = {1, perm(m-1)} +{2, perm(m-1)} +...........+{m, perm(m-1)}

 

程序如下: 输出可以美化一下的,留给读者,呵呵

 

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

static n = 0;

void exchange(int *x,int *y)
{
int tmp = *x;
*x = *y;
*y = tmp;
}

void print(int *a,int len)
{
 int i = 0;
  for(i=0;i<len;i++)
        {
                printf("%d ",a[i]);
        }
 printf("\n");
 n++;
}


void perm(int *a,int low,int len)
{
int i = 0;

if(low == 2)
{
 print(a,len);
 exchange(&a[0],&a[1]);
 print(a,len);
 exchange(&a[0],&a[1]);
}
else
{

for(i = low-1;i>=0;i--)
{
 exchange(&a[i],&a[low-1]);
 perm(a,low-1,len);
 exchange(&a[i],&a[low-1]);
}

}

}


int main()
{
int list[] = {1,2,3,4,5};

perm(list,5,5);

printf("%d \n",n);
return 0;
}

 

阅读更多
文章标签: exchange 算法 list
个人分类: 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭