match_phrase
match_phrase_prefix可以认为是match_phrase的增强版本,所以先了解一下match_phrase。
match_phrase词组匹配会先解析检索词,并且标注出每个的token相对位置,搜索匹配的字段的必须包含所有的检索词的token,并且他们的相对位置也要和检索词里面相同。
在《系统学习ElasticSearch》中,有很好的例子:
# DSL语句
GET /tehero_index/_doc/_search
{
"query":{
"match_phrase":{
"content.ik_smart_analyzer":"系统编程"
}
}
DSL执行步骤分析:
- 1)检索词“系统编程”被分词为两个Token【系统,Position=0】【编程,Position=1】;
- 2)倒排索引检索时,等价于sql:【where Token = 系统 and 系统_Position=0 and Token = 编程 and 编程_Position=1】;
如果我们不要求这两个单词相邻,希望放松一点条件,可以添加slop参数,slop代表两个token之间相隔的最多的距离(最多需要移动多少次才能相邻)。
match_phrase_prefix
与match_phrase查询类似,但是会对最后一个Token在倒排序索引列表中进行通配符搜索。
# DSL语句
GET /tehero_index/_doc/_search
{
"query":{
"match_phrase":{
"content.ik_smart_analyzer":"我编程系"
}
}
这个分词的结果会是“我”、“编程”、“系”。
“我”和“编程”是精确匹配,“系”是前缀匹配,等价于sql:【where Token = ‘我’ and 我_Position=0 and Token = ‘编程’ and 编程_Position=1 and (Token_Position=2 and Token like ‘系%’)】
需要注意的点
elasticsearch的官网文档上,有match_phrase_prefix的完整参数结构:
query,查询的关键字
analyer,对关键字使用的分词器
max_expansions,最后一个term做前缀匹配时的最大拓展数,默认是50
slop,与match_phrase的slop相同,允许term之间的最大间隔
zero_terms_query,经过analyer解析后,没有任何term时,不返回数据,还是返回全部数据。默认返回全部数据。
max_expansions是非常重要的一个参数,需要留意下,不然很容易出现与我们期望不符合的情况。
在工作中,我试过使用match_phrase_prefix来匹配手机号,但是出现了一些奇怪的现象:
- 测试的手机号是“123454688885555”,使用match_phrase_prefix,关键字是“12345”来查询指定租户下的数据,没有返回任何文档。
- 把关键字换成“1234546”,正确返回了对应的文档。
为什么会这样呢?为什么12345就不返回,1234546就返回了?
个人是这样觉得的:
- 手机号虽然存在es中是字符串,但是字符串的内容是数字,分词器并不会对它进行分词,也就是一个手机号就是一个term
- 在测试数据中,数据有5000条,每条数据的手机号码都是不一样的,也就是说,手机号这样的term有5000个。
- max_expansions默认是50,也就是说,会把12345拓展出以12345为开头的额外50个term,例如123456、1234546、123456898…
- 最后将拓展出来的term也用于查询
为什么我会认为是这样的过程呢?
elasticsearch除了会构建倒排索引之外,还会在所有的term构建一个term dictionary (词典)和term index(词索引,印象是跳跃表结构),帮助查找。
当出现前缀匹配的时候,可以在term index和term dictionary中快速找到对应开通的term。
根据max_expansions的值,拿到指定个数的term。
12345查不到数据,1234546能查找,明显是1234546更精确,1234546拓展出来的term中包含了那个完整的手机号码123454688885555。
在查询这个参数相关的文章的时候,发现:
- 有的人认为这个数值是值通配符,值是50,就能模糊匹配多关键字之后50的字符的term。
- 有的人认为这个数值是匹配的文档数,值是50,则匹配50个文档,返回这50个文档中命中的部分。
这都是不对的,明显与手机号的实验不符。
《系统学习ElasticSearch》中对max_expansions的描述就像是占位符…