Task4建模调参

本文详细介绍了机器学习中的模型建模与调参流程,包括线性回归、决策树、GBDT、XGBoost和LightGBM等模型。讨论了线性回归在处理长尾分布数据时的挑战,以及如何通过交叉验证、特征选择和模型对比来优化模型性能。文中还提到了贪心、网格和贝叶斯调参方法,并提供了相关资源和代码示例。
摘要由CSDN通过智能技术生成

学习目标

了解常用的机器学习模型,并掌握机器学习模型的建模与调参流程
内容介绍

  1. 线性回归模型:
    线性回归对于特征的要求;
    处理长尾分布;
    理解线性回归模型;

  2. 模型性能验证:
    评价函数与目标函数;
    交叉验证方法;
    留一验证方法;
    针对时间序列问题的验证;
    绘制学习率曲线;
    绘制验证曲线;

  3. 嵌入式特征选择:
    Lasso回归;
    Ridge回归;
    决策树;

  4. 模型对比:
    常用线性模型;
    常用非线性模型;

  5. 模型调参:
    贪心调参方法;
    网格调参方法;
    贝叶斯调参方法;

相关知识
1 线性回归模型https://zhuanlan.zhihu.com/p/49480391

2 决策树模型https://zhuanlan.zhihu.com/p/65304798

3 GBDT模型https://zhuanlan.zhihu.com/p/45145899

4 XGBoost模型https://zhuanlan.zhihu.com/p/86816771

5 LightGBM模型https://zhuanlan.zhihu.com/p/89360721

6 推荐教材:
•《机器学习》 https://book.douban.com/subject/26708119/
•《统计学习方法》 https://book.douban.com/subject/10590856/
•《Python大战机器学习》 https://book.douban.com/subject/26987890/
•《面向机器学习的特征工程》 https://book.douban.com/subject/26826639/
•《数据科学家访谈录》 https://book.douban.com/subject/30129410/

代码示例

1 读取数据

# 引入模块,读取数据
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')

reduce_mem_usage 函数通过调整数据类型,帮助我们减少数据在内存中占用的空间

def reduce_mem_usage(df):
    """
    对数据进行压缩,从而减少内存消耗
    """
    start_mem = df.memory_usage().sum() 
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    
    for col in df.columns:
        col_type = df[col].dtype
        
        if col_type != object:
            c_min = df[col].min()
            c_max = df[col].max()
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)  
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
        else:
            df[col] = df[col].astype('category')

    end_mem = df.memory_usage().sum() 
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    return df
sample_feature = reduce_mem_usage(pd.read_csv('data_for_tree.csv'))

continuous_feature_names = [x for x in sample_feature.columns if x not in ['price','brand','model','brand']]

2 线性回归 & 五折交叉验证 & 模拟真实业务情况

sample_feature = sample_feature.dropna().replace('-', 0).reset_index(drop=True)
sample_feature['notRepairedDamage'] = sample_feature['notRepairedDamage'].astype(np.float32)
train = sample_feature[continuous_feature_names + ['price']]

train_X = train[continuous_feature_names]
train_y = train['price']

2.1简单建模

from sklearn.linear_model import LinearRegression
model = LinearRegression(normalize=True)
model = model.fit(train_X, train_y)
# 查看训练的线性回归模型的截距(intercept)与权重(coef)
'intercept:'+ str(model.intercept_)

sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)

结果如下:

[('v_6', 3342612.384537345),
, ('v_8', 684205.534533214),
<
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据引用\[1\]和引用\[2\]的内容,调参是指在深度学习模型中调整超参数的过程。超参数包括学习率、批量大小、动量和权重衰减等。调参的目的是找到这些超参数的最佳值,以使得模型能够获得最佳的结果。在调参过程中,需要根据模型的复杂性和情况来确定隐藏层的层数。一般来说,对于复杂模型来说,全连接层不需要设置过深,通常1-2层就可以满足需求。调参是一个挑战性的任务,需要在高维空间中找到最佳的超参数组合,以提高模型的性能和准确度。 #### 引用[.reference_title] - *1* [全连接层调参tricks](https://blog.csdn.net/weixin_42419611/article/details/116756820)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [ 天桥调参师秘籍:一份深度学习超参微调技术指南 ...](https://blog.csdn.net/weixin_33713707/article/details/89551812)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [天桥调参师秘籍:一份深度学习超参微调技术指南](https://blog.csdn.net/weixin_33745006/article/details/112013213)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值