pandas task02

import numpy as np
import pandas as pd
df = pd.read_csv('datalab/61658/table.csv',index_col='ID')
df.head()

一、单级索引

  1. loc方法、iloc方法、[]操作符
    最常用的索引方法可能就是这三类,其中iloc表示位置索引,loc表示标签索引,[]也具有很大的便利性。
#(a)loc方法(注意:所有在loc中使用的切片全部包含右端点!)
#① 单行索引:
df.loc[1103]

#② 多行索引
df.loc[[1102,2304]]

df.loc[1304:].head()

df.loc[2402::-1].head()

#③ 单列索引:
df.loc[:,'Height'].head()

#④ 多列索引:
df.loc[:,['Height','Math']].head()

df.loc[:,'Height':'Math'].head()

#⑤ 联合索引:
df.loc[1102:2401:3,'Height':'Math'].head()

#⑥ 函数式索引:
df.loc[lambda x:x['Gender']=='M'].head()
#loc中使用的函数,传入参数就是前面的df

def f(x):
    return [1101,1103]
df.loc[f]

#⑦ 布尔索引(将重点在第2节介绍)
df.loc[df['Address'].isin(['street_7','street_4'])].head()

df.loc[[True if i[-1]=='4' or i[-1]=='7' else False for i in df['Address'].values]].head()
#小节:本质上说,loc中能传入的只有布尔列表和索引子集构成的列表,只要把握这个原则就很容易理解上面那些操作
#(b)iloc方法(注意与loc不同,切片右端点不包含)
#① 单行索引:
df.iloc[3]
#② 多行索引:
df.iloc[3:5]
#③ 单列索引:
df.iloc[:,3].head()
#④ 多列索引:
df.iloc[:,7::-2].head()
#⑤ 混合索引:
df.iloc[3::4,7::-2].head()
#⑥ 函数式索引:
df.iloc[lambda x:[3]].head()
#小节:由上所述,iloc中接收的参数只能为整数或整数列表,不能使用布尔索引
#(c) []操作符
#如果不想陷入困境,请不要在行索引为浮点时使用[]操作符,因为在Series中的浮点[]并不是进行位置比较,而是值比较,非常特殊
#(c.1)Series的[]操作
#① 单元素索引:
s = pd.Series(df['Math'],index=df.index)
s[1101]
#使用的是索引标签
#② 多行索引
s[0:4]
#使用的是绝对位置的整数切片,与元素无关,这里容易混淆
#③ 函数式索引:
s[lambda x: x.index[16::-6]]
#注意使用lambda函数时,直接切片(如:s[lambda x: 16::-6])就报错,此时使用的不是绝对位置切片,而是元素切片,非常易错
#④ 布尔索引:
s[s>80]
#(c.2)DataFrame的[]操作
#① 单行索引:
df[1:2]
#这里非常容易写成df['label'],会报错
#同Series使用了绝对位置切片
#如果想要获得某一个元素,可用如下get_loc方法:

row = df.index.get_loc(1102)
df[row:row+1]
#② 多行索引:
#用切片,如果是选取指定的某几行,推荐使用loc,否则很可能报错
df[3:5]
#③ 单列索引:
df['School'].head()
#④ 多列索引:
df[['School','Math']].head()
#⑤函数式索引:
df[lambda x:['Math','Physics']].head()
#⑥ 布尔索引:
df[df['Gender']=='F'].head()
#小节:一般来说,[]操作符常用于列选择或布尔选择,尽量避免行的选择
  1. 布尔索引
########2. 布尔索引
#(a)布尔符号:'&','|','~':分别代表和and,或or,取反not
df[(df['Gender']=='F')&(df['Address']=='street_2')].head()

df[(df['Math']>85)|(df['Address']=='street_7')].head()

df[~((df['Math']>75)|(df['Address']=='street_1'))].head()
#loc和[]中相应位置都能使用布尔列表选择:
df.loc[df['Math']>60,(df[:8]['Address']=='street_6').values].head()
#如果不加values就会索引对齐发生错误,Pandas中的索引对齐是一个重要特征,很多时候非常使用
#但是若不加以留意,就会埋下隐患
#(b) isin方法
df[df['Address'].isin(['street_1','street_4'])&df['Physics'].isin(['A','A+'])]

#上面也可以用字典方式写:
df[df[['Address','Physics']].isin({'Address':['street_1','street_4'],'Physics':['A','A+']}).all(1)]
#all与&的思路是类似的,其中的1代表按照跨列方向判断是否全为True
  1. 快速标量索引
#######3. 快速标量索引
#当只需要取一个元素时,at和iat方法能够提供更快的实现:
display(df.at[1101,'School'])
display(df.loc[1101,'School'])
display(df.iat[0,0])
display(df.iloc[0,0])
#可尝试去掉注释对比时间
#%timeit df.at[1101,'School']
#%timeit df.loc[1101,'School']
#%timeit df.iat[0,0]
#%timeit df.iloc[0,0]
  1. 区间索引
######4. 区间索引
#此处介绍并不是说只能在单级索引中使用区间索引,只是作为一种特殊类型的索引方式,在此处先行介绍
#(a)利用interval_range方法
pd.interval_range(start=0,end=5)
#closed参数可选'left''right''both''neither',默认左开右闭

pd.interval_range(start=0,periods=8,freq=5)
#periods参数控制区间个数,freq控制步长
#(b)利用cut将数值列转为区间为元素的分类变量,例如统计数学成绩的区间情况:
math_interval = pd.cut(df['Math'],bins=[0,40,60,80,100])
#注意,如果没有类型转换,此时并不是区间类型,而是category类型
math_interval.head()
#(c)区间索引的选取
df_i = df.join(math_interval,rsuffix='_interval')[['Math','Math_interval']]\
            .reset_index().set_index('Math_interval')
df_i.head()

df_i.loc[65].head()
#包含该值就会被选中

df_i.loc[[65,90]].head()

#如果想要选取某个区间,先要把分类变量转为区间变量,再使用overlap方法:

#df_i.loc[pd.Interval(70,75)].head() 报错
df_i[df_i.index.astype('interval').overlaps(pd.Interval(70, 85))].head()
#只要索引与(70,85]这个区间有交集就会被选中,注意pd.Interval默认构造区间都是左开右闭,可选closed参数right,left,both,neither

二、多级索引

1.创建多级索引

#########二、多级索引
#########1. 创建多级索引
#(a)通过from_tuple或from_arrays
#① 直接创建元组
tuples = [('A','a'),('A','b'),('B','a'),('B','b')]
mul_index = pd.MultiIndex.from_tuples(tuples, names=('Upper', 'Lower'))
mul_index

pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)

#② 利用zip创建元组
L1 = list('AABB')
L2 = list('abab')
tuples = list(zip(L1,L2))
mul_index = pd.MultiIndex.from_tuples(tuples, names=('Upper', 'Lower'))
pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)

#③ 通过Array创建
arrays = [['A','a'],['A','b'],['B','a'],['B','b']]
mul_index = pd.MultiIndex.from_tuples(arrays, names=('Upper', 'Lower'))
pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index)

mul_index
#由此看出内部自动转成元组
#(b)通过from_product
L1 = ['A','B']
L2 = ['a','b']
pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
#两两相乘

#(c)指定df中的列创建(set_index方法)
df_using_mul = df.set_index(['Class','Address'])
df_using_mul.head()

2.多层索引切片

#2. 多层索引切片
df_using_mul.head()
#(a)一般切片
#df_using_mul.loc['C_2','street_5']
#当索引不排序时,单个索引会报出性能警告
#df_using_mul.index.is_lexsorted()
#该函数检查是否排序
df_using_mul.sort_index().loc['C_2','street_5']
#df_using_mul.sort_index().index.is_lexsorted()

#df_using_mul.loc[('C_2','street_5'):] 报错
#当不排序时,不能使用多层切片
df_using_mul.sort_index().loc[('C_2','street_6'):('C_3','street_4')]
#注意此处由于使用了loc,因此仍然包含右端点

df_using_mul.sort_index().loc[('C_2','street_7'):'C_3'].head()
#非元组也是合法的,表示选中该层所有元素

#(b)第一类特殊情况:由元组构成列表
df_using_mul.sort_index().loc[[('C_2','street_7'),('C_3','street_2')]]
#表示选出某几个元素,精确到最内层索引

#(c)第二类特殊情况:由列表构成元组
df_using_mul.sort_index().loc[(['C_2','C_3'],['street_4','street_7']),:]
#选出第一层在‘C_2’和'C_3'中且第二层在'street_4'和'street_7'中的行

3.多层索引中的slice对象

#3. 多层索引中的slice对象

L1,L2 = ['A','B'],['a','b','c']
mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
L3,L4 = ['D','E','F'],['d','e','f']
mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small'))
df_s = pd.DataFrame(np.random.rand(6,9),index=mul_index1,columns=mul_index2)
df_s
idx=pd.IndexSlice
#IndexSlice本质上是对多个Slice对象的包装
idx[1:9:2,'A':'C','start':'end':2]
#索引Slice可以与loc一起完成切片操作,主要有两种用法¶
#(a)loc[idx[*,*]]型,第一个星号表示行,第二个表示列,且使用布尔索引时,需要索引对齐
#例子1
df_s.loc[idx['B':,df_s.iloc[0]>0.6]]
#df_s.loc[idx['B':,df_s.iloc[:,0]>0.6]] #索引没有对齐报错

#例子2
df_s.loc[idx[df_s.iloc[:,0]>0.6,:('E','f')]]
#(b)loc[idx[*,*],idx[*,*]]型
#这里与上面的区别在于(a)中的loc是没有逗号隔开的,但(b)是用逗号隔开,前面一个idx表示行索引,后面一个idx为列索引,这种用法非常灵活,因此多举几个例子方便理解
#例子1
df_s.loc[idx['A'],idx['D':]]
#后面的层出现,则前面的层必须出现
#df_s.loc[idx['a'],idx['D':]] #报错

#例子2
df_s.loc[idx[:'B','b':],:] #举这个例子是为了说明①可以在相应level使用切片②某一个idx可以用:代替表示全选

#例子3
df_s.iloc[:,0]>0.6

df_s.loc[idx[:'B',df_s.iloc[:,0]>0.6],:] #这个例子表示相应位置还可以使用布尔索引

#例子4
#特别要注意,(b)中的布尔索引是可以索引不对齐的,只需要长度一样,比如下面这个例子
df_s.loc[idx[:'B',(df_s.iloc[0]>0.6)[:6]],:]

#例子5
df_s.loc[idx[:'B','c':,(df_s.iloc[:,0]>0.6)],:]
#idx中层数k1大于df层数k2时,idx前k2个参数若相应位置是元素或者元素切片,则表示相应df层的元素筛选,同时也可以选择用同长度bool序列
#idx后面多出来的参数只能选择同bool序列,这样设计的目的是可以将元素筛选和条件筛选同时运用

#例子6
df_s.loc[idx[:'B',(df_s.iloc[:,0]>0.6),(df_s.iloc[:,0]>0.6)],:] #这个就不是元素筛选而是条件筛选
#df_s.loc[idx[:'B',(df_s.iloc[:,0]>0.6),'c',:]] #报错
#df_s.loc[idx[:'c','B',(df_s.iloc[:,0]>0.6),:]] #报错

4.索引层的变换

#4. 索引层的交换
#(a)swaplevel方法(两层交换)
df_using_mul.head()

df_using_mul.swaplevel(i=1,j=0,axis=0).sort_index().head()
#(b)reorder_levels方法(多层交换)
df_muls = df.set_index(['School','Class','Address'])
df_muls.head()

df_muls.reorder_levels([2,0,1],axis=0).sort_index().head()

#如果索引有name,可以直接使用name
df_muls.reorder_levels(['Address','School','Class'],axis=0).sort_index().head()

三、索引设定

1.index_col参数

#######三、索引设定
#1. index_col参数,index_col是read_csv中的一个参数,而不是某一个方法
pd.read_csv('datalab/61658/table.csv',index_col=['Address','School']).head()

2.reindex和reindex_like

#2. reindex和reindex_like
#reindex是指重新索引,它的重要特性在于索引对齐,很多时候用于重新排序
df.head()
df.reindex(index=[1101,1203,1206,2402])

df.reindex(columns=['Height','Gender','Average']).head()

#可以选择缺失值的填充方法:fill_value和method(bfill/ffill/nearest),其中method参数必须索引单调
df.reindex(index=[1101,1203,1206,2402],method='bfill')
#这里的单调是指df必须索引经过排序,否则报错
#bfill表示用所在索引1206的后一个有效行填充,ffill为前一个有效行,nearest是指最近的

df.reindex(index=[1101,1203,1206,2402],method='nearest')
#数值上1205比1301更接近1206,因此用前者填充

#reindex_like的作用为生成一个横纵索引完全与参数列表一致的DataFrame,数据使用被调用的表

df_temp = pd.DataFrame({'Weight':np.zeros(5),
                        'Height':np.zeros(5),
                        'ID':[1101,1104,1103,1106,1102]}).set_index('ID')
df_temp.reindex_like(df[0:5][['Weight','Height']])

#如果df_temp单调还可以使用method参数:

df_temp = pd.DataFrame({'Weight':range(5),
                        'Height':range(5),
                        'ID':[1101,1104,1103,1106,1102]}).set_index('ID').sort_index()
df_temp.reindex_like(df[0:5][['Weight','Height']],method='bfill')
#可以自行检验这里的1105的值是否是由bfill规则填充

3.set_index和reset_index

#3. set_index和reset_index
#先介绍set_index:从字面意思看,就是将某些列作为索引
#使用表内列作为索引
df.head()
df.set_index('Class').head()

#利用append参数可以将当前索引维持不变
df.set_index('Class',append=True).head()

#当使用与表长相同的列作为索引(需要先转化为Series,否则报错):
df.set_index(pd.Series(range(df.shape[0]))).head()

#可以直接添加多级索引:
df.set_index([pd.Series(range(df.shape[0])),pd.Series(np.ones(df.shape[0]))]).head()
#下面介绍reset_index方法,它的主要功能是将索引重置,默认状态直接恢复到自然数索引:
df.reset_index().head()

#用level参数指定哪一层被reset,用col_level参数指定set到哪一层:
L1,L2 = ['A','B','C'],['a','b','c']
mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
L3,L4 = ['D','E','F'],['d','e','f']
mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small'))
df_temp = pd.DataFrame(np.random.rand(9,9),index=mul_index1,columns=mul_index2)
df_temp.head()

df_temp1 = df_temp.reset_index(level=1,col_level=1)
df_temp1.head()

df_temp1.columns
#看到的确插入了level2

df_temp1.index
#最内层索引被移出

4.rename_axis和rename

#4. rename_axis和rename
#rename_axis是针对多级索引的方法,作用是修改某一层的索引名,而不是索引标签
df_temp.rename_axis(index={'Lower':'LowerLower'},columns={'Big':'BigBig'})
#rename方法用于修改列或者行索引标签,而不是索引名:

df_temp.rename(index={'A':'T'},columns={'e':'changed_e'}).head()

四、常用索引型函数

1.where函数

#######四、常用索引型函数
#1. where函数,当对条件为False的单元进行填充:
df.head()

df.where(df['Gender']=='M').head()
#不满足条件的行全部被设置为NaN

#通过这种方法筛选结果和[]操作符的结果完全一致:
df.where(df['Gender']=='M').dropna().head()

#第一个参数为布尔条件,第二个参数为填充值:
df.where(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()

2.mask函数

#2. mask函数
#mask函数与where功能上相反,其余完全一致,即对条件为True的单元进行填充
df.mask(df['Gender']=='M').dropna().head()

df.mask(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()

3.query函数

#3. query函数
df.head()
#query函数中的布尔表达式中,下面的符号都是合法的:行列索引名、字符串、and/not/or/&/|/~/not in/in/==/!=、四则运算符
df.query('(Address in ["street_6","street_7"])&(Weight>(70+10))&(ID in [1303,2304,2402])')

五、重复元素处理

  1. duplicated方法
#######五、重复元素处理
#1. duplicated方法,该方法返回了是否重复的布尔列表
df.duplicated('Class').head()

#可选参数keep默认为first,即首次出现设为不重复,若为last,则最后一次设为不重复,若为False,则所有重复项为True
df.duplicated('Class',keep='last').tail()

df.duplicated('Class',keep=False).head()
  1. drop_duplicates方法
#2. drop_duplicates方法,从名字上看出为剔除重复项,这在后面章节中的分组操作中可能是有用的,例如需要保留每组的第一个值:
df.drop_duplicates('Class')

#参数与duplicate函数类似:
df.drop_duplicates('Class',keep='last')

#在传入多列时等价于将多列共同视作一个多级索引,比较重复项:
df.drop_duplicates(['School','Class'])

六、抽样函数

#######六、抽样函数
#这里的抽样函数指的就是sample函数
#(a)n为样本量
df.sample(n=5)

#(b)frac为抽样比
df.sample(frac=0.05)

#(c)replace为是否放回
df.sample(n=df.shape[0],replace=True).head()

df.sample(n=35,replace=True).index.is_unique

#(d)axis为抽样维度,默认为0,即抽行
df.sample(n=3,axis=1).head()

df.sample(n=3,axis=0).head()

#(e)weights为样本权重,自动归一化
df.sample(n=3,weights=np.random.rand(df.shape[0])).head()

#以某一列为权重,这在抽样理论中很常见
#抽到的概率与Math数值成正比
df.sample(n=3,weights=df['Math']).head()

七、问题与练习

1. 问题
【问题一】 如何更改列或行的顺序?如何交换奇偶行(列)的顺序?
更改行的顺序:使用 df.loc[indexs, :] 按照指定 indexs 来调整行的顺序
更改列的顺序:使用 df.loc[:, columns] 按照指定 columns 来调整列的顺序


# df的位置索引如下
index = [0, 1, 2, 3, 4, 5]
# 然后将 index 偶数项加一,奇数项减一
# 记得
index_new = [1, 0, 3, 2, 5, 4]
df.iloc[index_new, :] #即交换奇偶行

【问题二】 如果要选出DataFrame的某个子集,请给出尽可能多的方法实现。
使用 loc, iloc, [], 布尔索引,区间索引。
一般使用 loc 和 iloc 来取行,使用 [] 来取列。

【问题三】 query函数比其他索引方法的速度更慢吗?在什么场合使用什么索引最高效?
query 函数比其他索引方法更快,可以避免潜在的数据在不同内存缓存间的移动,节省内存,语法简洁。

当 DataFrame 占用内存较多时,推荐使用 eval()/query(),参考https://www.jianshu.com/p/caaf201fc5a8

【问题四】 单级索引能使用Slice对象吗?能的话怎么使用,请给出一个例子。
可以。

idx = pd.IndexSlice
df.loc[idx[1], :]

【问题五】 如何快速找出某一列的缺失值所在索引?

df[df.isnull().values==True].drop_duplicates()
#df[df.isnull().values==True].drop_duplicates()
df_1 = pd.DataFrame({'a':[1, 2, 3 ,4], 'b': [5, 6, 7, 8], 'c':[9, 10, 11, 12], 'd':[None, 14, None, 16]})
np.where(df_1['d'].isnull())

【问题六】 索引设定中的所有方法分别适用于哪些场合?怎么直接把某个DataFrame的索引换成任意给定同长度的索引?

#适用分组的情况
df_1.set_index(pd.Series(np.ones(df_1.shape[0])))

【问题七】 多级索引有什么适用场合?
有多层限制条件下对比条件的影响。
【问题八】 什么时候需要重复元素处理?
求unique的时候可以试试
**
**
【 练习一】 现有一份关于UFO的数据集,请解决下列问题:
(a)在所有被观测时间超过60s的时间中,哪个形状最多?

df=pd.read_csv('datalab/61658/UFO.csv')
df.head()
df.rename(columns={'duration (seconds)':'duration'},inplace=True)
df['duration'].astype('float')
df.head()

df.query('duration > 60')['shape'].value_counts().index[0]

(b)对经纬度进行划分:-180°至180°以30°为一个划分,-90°至90°以18°为一个划分,请问哪个区域中报告的UFO事件数量最多?

bins_long = np.linspace(-180,180,13).tolist()
bins_la = np.linspace(-90,90,11).tolist()
cuts_long = pd.cut(df['longitude'],bins=bins_long)
df['cuts_long'] = cuts_long
cuts_la = pd.cut(df['latitude'],bins=bins_la)
df['cuts_la'] = cuts_la
df.head()

df.set_index(['cuts_long','cuts_la']).index.value_counts().head()

【练习二】 现有一份关于口袋妖怪的数据集,请解决下列问题:
(a)双属性的Pokemon占总体比例的多少?

df = pd.read_csv('datalab/61658/Pokemon.csv')
df.head()

df['Type 2'].count()/df.shape[0]

(b)在所有种族值(Total)不小于580的Pokemon中,非神兽(Legendary=False)的比例为多少?

df.query('Total >= 580')['Legendary'].value_counts(normalize=True)

(c)在第一属性为格斗系(Fighting)的Pokemon中,物攻排名前三高的是哪些?

#c,分别为Maga形态的路卡利欧、修缮老头、怪力
df[df['Type 1']=='Fighting'].sort_values(by='Attack',ascending=False).iloc[:3]

(d)请问六项种族指标(HP、物攻、特攻、物防、特防、速度)极差的均值最大的是哪个属性(只考虑第一属性,且均值是对属性而言)?

#(d) 钢系的极差均值最大
df['range'] = df.iloc[:,5:11].max(axis=1)-df.iloc[:,5:11].min(axis=1)
attribute = df[['Type 1','range']].set_index('Type 1')
max_range = 0
result = ''
for i in attribute.index.unique():
    temp = attribute.loc[i,:].mean()
    if temp.values[0] > max_range:
        max_range = temp.values[0]
        result = i
result

(e)哪个属性(只考虑第一属性)的神兽比例最高?该属性神兽的种族值也是最高的吗?

#(e) 超能系占比最高,但普通系均值最高(因为创世神的关系)
df.query('Legendary == True')['Type 1'].value_counts(normalize=True).index[0]

attribute = df.query('Legendary == True')[['Type 1','Total']].set_index('Type 1')
max_value = 0
result = ''
for i in attribute.index.unique():
    temp = float(attribute.loc[i,:].mean())
    if temp > max_value:
        max_value = temp
        result = i
result

相关链接:https://github.com/datawhalechina/joyful-pandas

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值