pandas task03

一、SAC过程

1.内涵
SAC指的是分组操作中的split-apply-combine过程。
其中split指基于某一些规则,将数据拆成若干组,apply是指对每一组独立地使用函数,combine指将每一组的结果组合成某一类数据结构。
2.apply过程
在该过程中,我们实际往往会遇到四类问题:
整合(Aggregation)——即分组计算统计量(如求均值、求每组元素个数)
变换(Transformation)——即分组对每个单元的数据进行操作(如元素标准化)
过滤(Filtration)——即按照某些规则筛选出一些组(如选出组内某一指标小于50的组)
综合问题——即前面提及的三种问题的混合

二、groupby函数

import numpy as np
import pandas as pd
df = pd.read_csv('datalab/61658/table.csv',index_col='ID')
df.head()

1. groupby分组函数的基本内容

#####二、groupby函数
#####1. 分组函数的基本内容:
#(a)根据某一列分组
grouped_single = df.groupby('School')

#经过groupby后会生成一个groupby对象,该对象本身不会返回任何东西,只有当相应的方法被调用才会起作用
#例如取出某一个组:
grouped_single.get_group('S_1').head()
#(b)根据某几列分组
grouped_mul = df.groupby(['School','Class'])
grouped_mul.get_group(('S_2','C_4'))
#(c)组容量与组数
grouped_single.size()
grouped_mul.size()
grouped_single.ngroups
grouped_mul.ngroups
#(d)组的遍历
for name,group in grouped_single:
    print(name)
    display(group.head())
#(e)level参数(用于多级索引)和axis参数
df.set_index(['Gender','School']).groupby(level=1,axis=0).get_group('S_1').head()

df.set_index(['Gender','School']).groupby(level=0,axis=0).get_group('F').head()

2.groupby对象的特点

#2. groupby对象的特点
#(a)查看所有可调用的方法
#由此可见,groupby对象可以使用相当多的函数,灵活程度很高
print([attr for attr in dir(grouped_single) if not attr.startswith('_')])
#(b)分组对象的head和first
#对分组对象使用head函数,返回的是每个组的前几行,而不是数据集前几行
grouped_single.head(2)

#first显示的是以分组为索引的每组的第一个分组信息
grouped_single.first()
#(c)分组依据
#对于groupby函数而言,分组的依据是非常自由的,只要是与数据框长度相同的列表即可,同时支持函数型分组
df.groupby(np.random.choice(['a','b','c'],df.shape[0])).get_group('a').head()
#相当于将np.random.choice(['a','b','c'],df.shape[0])当做新的一列进行分组

#从原理上说,我们可以看到利用函数时,传入的对象就是索引,因此根据这一特性可以做一些复杂的操作
df[:5].groupby(lambda x:print(x)).head(0)

#根据奇偶行分组
df.groupby(lambda x:'奇数行' if not df.index.get_loc(x)%2==1 else '偶数行').groups

#如果是多层索引,那么lambda表达式中的输入就是元组,下面实现的功能为查看两所学校中男女生分别均分是否及格
#注意:此处只是演示groupby的用法,实际操作不会这样写
math_score = df.set_index(['Gender','School'])['Math'].sort_index()
grouped_score = df.set_index(['Gender','School']).sort_index().\
            groupby(lambda x:(x,'均分及格' if math_score[x].mean()>=60 else '均分不及格'))
for name,_ in grouped_score:print(name)
#(d)groupby的[]操作
#可以用[]选出groupby对象的某个或者某几个列,上面的均分比较可以如下简洁地写出:
df.groupby(['Gender','School'])['Math'].mean()>=60

#用列表可选出多个属性列:
df.groupby(['Gender','School'])[['Math','Height']].mean()
#(e)连续型变量分组
#例如利用cut函数对数学成绩分组:
bins = [0,40,60,80,90,100]
cuts = pd.cut(df['Math'],bins=bins) #可选label添加自定义标签
df.groupby(cuts)['Math'].count()

三、聚合、过滤和变换

1.聚合

#三、聚合、过滤和变换
#1. 聚合(Aggregation)
#(a)常用聚合函数
#所谓聚合就是把一堆数,变成一个标量,因此mean/sum/size/count/std/var/sem/describe/first/last/nth/min/max都是聚合函数
group_m = grouped_single['Math']
group_m.std().values/np.sqrt(group_m.count().values)== group_m.sem().values
#(b)同时使用多个聚合函数
group_m.agg(['sum','mean','std'])
#这里就是指对学校分组,然后计算Math的相关聚合统计量

#利用元组进行重命名
group_m.agg([('rename_sum','sum'),('rename_mean','mean')])

#指定哪些函数作用哪些列
grouped_mul.agg({'Math':['mean','max'],'Height':'var'})
#(c)使用自定义函数

grouped_single['Math'].agg(lambda x:print(x.head(),'间隔'))
#可以发现,agg函数的传入是分组逐列进行的,有了这个特性就可以做许多事情

#官方没有提供极差计算的函数,但通过agg可以容易地实现组内极差计算
grouped_single['Math'].agg(lambda x:x.max()-x.min())
#(d)利用NamedAgg函数进行多个聚合
#注意:不支持lambda函数,但是可以使用外置的def函数
def R1(x):
    return x.max()-x.min()
def R2(x):
    return x.max()-x.median()
grouped_single['Math'].agg(min_score1=pd.NamedAgg(column='col1', aggfunc=R1),
                           max_score1=pd.NamedAgg(column='col2', aggfunc='max'),
                           range_score2=pd.NamedAgg(column='col3', aggfunc=R2)).head()
#(e)带参数的聚合函数
#判断是否组内数学分数至少有一个值在50-52之间:
def f(s,low,high):
    return s.between(low,high).max()
grouped_single['Math'].agg(f,50,52)

#如果需要使用多个函数,并且其中至少有一个带参数,则使用wrap技巧:
def f_test(s,low,high):
    return s.between(low,high).max()
def agg_f(f_mul,name,*args,**kwargs):
    def wrapper(x):
        return f_mul(x,*args,**kwargs)
    wrapper.__name__ = name
    return wrapper
new_f = agg_f(f_test,'at_least_one_in_50_52',50,52)
grouped_single['Math'].agg([new_f,'mean']).head()

2.过滤

#2. 过滤(Filteration)
#filter函数是用来筛选某些组的(务必记住结果是组的全体),因此传入的值应当是布尔标量
grouped_single[['Math','Physics']].filter(lambda x:(x['Math']>32).all()).head()

#trick one: 内置函数all和any的区别
#all 如果为空返回True,如果非空,全真为真 否则为假
#any 有一个真为真

3.变换

#3. 变换(Transformation)
#(a)传入对象
#transform函数中传入的对象是组内的列,并且返回值需要与列长完全一致
grouped_single[['Math','Height']].transform(lambda x:x-x.min()).head()

#如果返回了标量值,那么组内的所有元素会被广播为这个值
grouped_single[['Math','Height']].transform(lambda x:x.mean()).head()
#(b)利用变换方法进行组内标准化
grouped_single[['Math','Height']].transform(lambda x:(x-x.mean())/x.std()).head()
#(c)利用变换方法进行组内缺失值的均值填充
df_nan = df[['Math','School']].copy().reset_index()
df_nan.loc[np.random.randint(0,df.shape[0],25),['Math']]=np.nan
df_nan.head()

df_nan.groupby('School').transform(lambda x: x.fillna(x.mean())).join(df.reset_index()['School']).head()

四、apply函数

1.apply函数的灵活性

#四、apply函数
#1. apply函数的灵活性
#可能在所有的分组函数中,apply是应用最为广泛的,这得益于它的灵活性:
#对于传入值而言,从下面的打印内容可以看到是以分组的表传入apply中:
df.groupby('School').apply(lambda x:print(x.head(1)))
#apply函数的灵活性很大程度来源于其返回值的多样性:
#① 标量返回值
df[['School','Math','Height']].groupby('School').apply(lambda x:x.max())

#② 列表返回值
df[['School','Math','Height']].groupby('School').apply(lambda x:x-x.min()).head()

#③ 数据框返回值
df[['School','Math','Height']].groupby('School')\
    .apply(lambda x:pd.DataFrame({'col1':x['Math']-x['Math'].max(),
                                  'col2':x['Math']-x['Math'].min(),
                                  'col3':x['Height']-x['Height'].max(),
                                  'col4':x['Height']-x['Height'].min()})).head()

2.用apply同时统计多个指标

#2. 用apply同时统计多个指标
#此处可以借助OrderedDict工具进行快捷的统计:
from collections import OrderedDict
def f(df):
    data = OrderedDict()
    data['M_sum'] = df['Math'].sum()
    data['W_var'] = df['Weight'].var()
    data['H_mean'] = df['Height'].mean()
    return pd.Series(data)
grouped_single.apply(f)

五、问题与练习

1.问题
【问题一】 什么是fillna的前向/后向填充,如何实现?

向前和向后填充,使用 ffill和 bfill
fillna(method=‘ffill’)
fillna(method=‘bfill’)

df_nan.Math=df_nan.Math.fillna(method='pad')

【问题二】 下面的代码实现了什么功能?请仿照设计一个它的groupby版本。

s = pd.Series ([0, 1, 1, 0, 1, 1, 1, 0])
s1 = s.cumsum()
result = s.mul(s1).diff().where(lambda x: x < 0).ffill().add(s1,fill_value =0)

答:
s1:将s序列求累加和
s.mul(s1): s 与s1累乘
diff() :求一阶差分
where(lambda x: x < 0) :判断值是否小于0
fill():向下填充
add(s1,fill_value =0) :缺失值补0后与s1求和

【问题三】 如何计算组内0.25分位数与0.75分位数?要求显示在同一张表上。

def R1(x):
    return np.percentile(x,25)
def R2(x):
    return np.percentile(x,75)
print(grouped_single.agg(percentile_25=pd.NamedAgg(column='Math',aggfunc=R1),
						percentile_75=pd.NamedAgg(column='Math', aggfunc=R2)))
gp.apply(lambda x:pd.DataFrame({'q25':x.quantile(0.25),
                                'q75':x.quantile(0.75)}))

【问题四】 既然索引已经能够选出某些符合条件的子集,那么filter函数的设计有什么意义?

索引可以在组内筛选,filter函数是用来筛选某些组的

【问题五】 整合、变换、过滤三者在输入输出和功能上有何异同?
聚合针对每个组
变换针对组内对象
过滤针对筛选组
1.相同点
在输入输出上,都是输入输出分组
功能上,都是分别对每一个组内的元素进行操作
2.不同点
聚合,和字面一样,主要用于将组内元素聚合,作为整体来操作,输出的也是某一个组的整体情况
变换,主要是对组内的每一个元素进行变换操作
过滤,主要是用来筛选组的

【问题六】 在带参数的多函数聚合时,有办法能够绕过wrap技巧实现同样功能吗?

2.练习
【练习一】: 现有一份关于diamonds的数据集,列分别记录了克拉数、颜色、开采深度、价格,请解决下列问题:#pd.read_csv(‘data/Diamonds.csv’).head()
(a) 在所有重量超过1克拉的钻石中,价格的极差是多少?
(b) 若以开采深度的0.2\0.4\0.6\0.8分位数为分组依据,每一组中钻石颜色最多的是哪一种?该种颜色是组内平均而言单位重量最贵的吗?
© 以重量分组(0-0.5,0.5-1,1-1.5,1.5-2,2+),按递增的深度为索引排序,求每组中连续的严格递增价格序列长度的最大值。
(d) 请按颜色分组,分别计算价格关于克拉数的回归系数。(单变量的简单线性回归,并只使用Pandas和Numpy完成)

df=pd.read_csv('datalab/61658/Diamonds.csv')
df.head()
#(a) 极差为17561
df_r = df.query('carat>1')['price']
df_r.max()-df_r.min()
#(b) 0-0.2分位数区间最多的为‘E’,其余区间都为‘G’
bins = df['depth'].quantile(np.linspace(0,1,6)).tolist()
cuts = pd.cut(df['depth'],bins=bins) #可选label添加自定义标签
df['cuts'] = cuts
df.head()

color_result = df.groupby('cuts')['color'].describe()
color_result

#前三个分位数区间不满足条件,后两个区间中数量最多的颜色的确是均重价格中最贵的
df['均重价格']=df['price']/df['carat']
color_result['top'] == [i[1] for i in df.groupby(['cuts'
                                ,'color'])['均重价格'].mean().groupby(['cuts']).idxmax().values]
#(c) 结果见下:
df = df.drop(columns='均重价格')
cuts = pd.cut(df['carat'],bins=[0,0.5,1,1.5,2,np.inf]) #可选label添加自定义标签
df['cuts'] = cuts
df.head()

def f(nums):
    if not nums:        
        return 0
    res = 1                            
    cur_len = 1                        
    for i in range(1, len(nums)):      
        if nums[i-1] < nums[i]:        
            cur_len += 1                
            res = max(cur_len, res)     
        else:                       
            cur_len = 1                 
    return res

for name,group in df.groupby('cuts'):
    group = group.sort_values(by='depth')
    s = group['price']
    print(name,f(s.tolist()))
#(d) 计算结果如下:
for name,group in df[['carat','price','color']].groupby('color'):
    L1 = np.array([np.ones(group.shape[0]),group['carat']]).reshape(2,group.shape[0])
    L2 = group['price']
    result = (np.linalg.inv(L1.dot(L1.T)).dot(L1)).dot(L2).reshape(2,1)
    print('当颜色为%s时,截距项为:%f,回归系数为:%f'%(name,result[0],result[1]))

【练习二】:有一份关于美国10年至17年的非法药物数据集,列分别记录了年份、州(5个)、县、药物类型、报告数量,请解决下列问题:#pd.read_csv(‘data/Drugs.csv’).head()
(a) 按照年份统计,哪个县的报告数量最多?这个县所属的州在当年也是报告数最多的吗?
(b) 从14年到15年,Heroin的数量增加最多的是哪一个州?它在这个州是所有药物中增幅最大的吗?若不是,请找出符合该条件的药物。

df = pd.read_csv('datalab/61658/Drugs.csv')
df.head()
#a
idx=pd.IndexSlice
for i in range(2010,2018):
    county = (df.groupby(['COUNTY','YYYY']).sum().loc[idx[:,i],:].idxmax()[0][0])
    state = df.query('COUNTY == "%s"'%county)['State'].iloc[0]
    state_true = df.groupby(['State','YYYY']).sum().loc[idx[:,i],:].idxmax()[0][0]
    if state==state_true:
        print('在%d年,%s县的报告数最多,它所属的州%s也是报告数最多的'%(i,county,state))
    else:
        print('在%d年,%s县的报告数最多,但它所属的州%s不是报告数最多的,%s州报告数最多'%(i,county,state,state_true))
#(b) OH州增加最多,Heroin是增量最大的,但增幅最大的是Acetyl fentanyl
df_b = df[(df['YYYY'].isin([2014,2015]))&(df['SubstanceName']=='Heroin')]
df_add = df_b.groupby(['YYYY','State']).sum()
(df_add.loc[2015]-df_add.loc[2014]).idxmax()

df_b = df[(df['YYYY'].isin([2014,2015]))&(df['State']=='OH')]
df_add = df_b.groupby(['YYYY','SubstanceName']).sum()
display((df_add.loc[2015]-df_add.loc[2014]).idxmax()) #这里利用了索引对齐的特点
display((df_add.loc[2015]/df_add.loc[2014]).idxmax())
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值