平面分割空间HDU1290

由二维平面分割问题可以得出规律,交点决定所分线段数,所分线段决定增加的平面数,

那么在三维空间,交线是否能给我们启发呢?

答案很显然,可以

n-1个平面将空间分成f(n-1)个部分

再加一个平面,要到达增加的空间数最大,就要尽可能的与n-1个平面相交,每与一个平面相交就会有一条交线,这样的话n-1个平面在这个平面上留下n-1条交线,这些交线可以把这个平面分成几个平面呢,由直线分割平面可以知道g(n)=g(n-1)+n,所以有g(n)=n*(n+1)/2+1;

所以增加的平面数会使空间数增加,所以空间数增加量为g(n)

所以得到n个平面分割空间数 递推式f(n)=f(n-1)+g(n-1);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

涛歌依旧fly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值