【数学题】新倍数问题

求出1,2,3,4,5,6,7,8,9,10的最小公倍数。
首先排除1,2,3,4,5.(因为8,9,10的存在)。
6和9的最小公倍是18,7和8最小公倍是56。
18和10的最小公倍是90.此时只剩下56,90。
56=2*2*2*7,90=2*3*3*5,最大公因数是2。
所以56和90的最小公倍数是56*90/2=2520。

求一个整数x,被N除余n;被M除余m。
则可以写成x=(k1)N+n,x=(k2)M+m。
大多情况下x+a既是N,又是M的倍数。
即让a1=(K1)N-n,a2=(K2)M-m 即可。
令a1=a2求出K1和K2。即得x表达式。

求两数的最大公因数常用辗转相除发。
求多个数的最大公因数则要两两辗转。
两数之积除以最大公约即是最小公倍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xosg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值