十四、Hive功能架构

一、Hive 能做什么,与 MapReduce 相比优势在哪里?
使用Hive是基于MapReduce的,在查询统计方面比MapReduce开发起来更简单。
1)Hive 是建立在Hadoop (HDFS/MR)上的用于管理和查询结果化/非结构化的数据仓库;
2)一种可以存储、查询和分析存储在Hadoop 中的大规模数据的机制;
3)Hive 定义了简单的类SQL 查询语言,称为HQL,它允许熟悉SQL 的用户查询数据;
4)允许用Java开发自定义的函数UDF来处理内置无法完成的复杂的分析工作;
5)Hive没有专门的数据格式(分隔符等可以自己灵活的设定);

二、为什么说 Hive 是 Hadoop 数据仓库?

Hive是构建在Hadoop之上的数据仓库

1)使用HQL作为查询接口;
2)使用HDFS作为存储;
3)使用MapReduce作为计算;

4)执行程序在Yarn上

三、Hive 架构,分为三个部分来理解


第一部分 用户接口Client端
包含CLI(hive shell)、JDBC/ODBC(java访问hive)、WEBUI(浏览器访问hive)
第二部分 驱动器(Driver)、元数据(MetaStore)
驱动器(Driver)包含:解析器、编译器、优化器、执行器;
解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误(比如select中被判定为聚合的字段在group by中是否有出现);
编译器(Physical Plan):将AST编译生成逻辑执行计划;
优化器(Query Optimizer):对逻辑执行计划进行优化;
执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/TEZ/Spark;
元数据: MetaStore
元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;
默认存储在自带的derby数据库中,推荐使用采用MySQL存储。Metastore;
第三部分 Hadoop
使用HDFS进行存储,使用MapReduce进行计算。

<think>好的,我现在需要回答用户关于Hive四层架构的问题。用户明确要求了解四层架构的组成和功能,所以我得先回忆一下Hive的架构相关知识。根据用户提供的引用,特别是引用[3]提到了Hive的基本组成,包括用户接口、元数据存储、解释器、编译器、优化器、执行器等。但用户问的是四层架构,可能需要将这些组件归纳到四层中。 首先,Hive的架构通常被分为不同的层次。根据我之前的了解,Hive的架构可以分为用户接口层、驱动层(Driver)、元数据层(Metastore)和执行层。但需要确认是否四层结构可能有不同的划分方式。比如,有的资料可能把驱动层再细分,或者把存储层单独列出来。不过结合用户提供的引用,引用[3]提到了用户接口、元数据存储、解释器、编译器、优化器等,这可能对应不同的层次。 用户接口层应该包括CLI、JDBC/ODBC、WebGUI,这些属于用户直接交互的部分。驱动层可能负责处理HQL查询的整个流程,包括解释、编译、优化和执行。元数据层则是存储表结构等信息的地方,通常使用关系型数据库如MySQL。执行层可能涉及与Hadoop的交互,比如生成MapReduce任务,由Hadoop集群执行。 需要确认四层的具体名称和组成。比如,是否将驱动层拆分为更细的组件,或者是否包含资源管理层?根据引用[3],驱动层包括解释器、编译器、优化器、执行器,这可能属于驱动层的一部分。而执行层可能是指将任务提交到Hadoop集群,如MapReduce或Spark。 所以可能的四层架构是: 1. 用户接口层 2. 驱动层(处理HQL到MR任务的转换) 3. 元数据存储层 4. 执行引擎层(与Hadoop交互) 或者可能有另一种划分,比如: 1. 用户接口层 2. 元数据管理层 3. 查询处理层(驱动层) 4. 执行引擎层 需要根据引用内容来调整。例如,引用[3]提到用户接口、元数据存储、解释器等组件。元数据存储是单独的一层,用户接口是一层,驱动层(解释器、编译器、优化器、执行器)作为处理层,执行层则是调用MapReduce的部分。这可能构成四层:用户接口层、元数据层、处理层(驱动层)、执行层。 不过,另一种可能的划分是将驱动层作为处理层的一部分,而执行引擎属于Hadoop本身,因此Hive的架构可能不包括执行引擎作为单独一层,而是驱动层负责生成执行计划,然后由Hadoop执行。所以四层可能是用户接口层、元数据层、驱动层、存储层(数据存储在HDFS)? 不过用户的问题明确是四层架构,需要确保正确性。可能需要查阅标准资料,但根据提供的引用,引用[3]提到Hive的基本组成包括用户接口、元数据存储、解释器、编译器、优化器、执行器。这些可能被组织成四层: 1. 用户接口层:提供访问方式,如CLI、JDBC等。 2. 元数据管理层(Metastore):存储元数据。 3. 驱动层(Driver):负责HQL的解析、编译、优化和执行计划的生成。 4. 执行引擎层:将执行计划转换为MapReduce/Tez/Spark任务,并提交到Hadoop集群执行。 这样的话,四层架构就明确了。需要确认每个层的功能: - 用户接口层:用户交互。 - 元数据管理层:存储结构信息。 - 驱动层:处理查询的整个流程。 - 执行引擎层:与底层计算框架交互。 另外,引用[4]提到生成的文件可以让TotalOrderPartitioner分发数据,这可能属于执行引擎层的优化部分。引用[3]中的解释器、编译器、优化器等属于驱动层。元数据存储层使用关系数据库如MySQL。 所以综合这些信息,Hive的四层架构应该是: 1. 用户接口层 2. 元数据管理层(Metastore) 3. 查询处理层(驱动层) 4. 执行引擎层 需要详细描述每一层的功能,并确保引用正确的引用来源。例如,元数据管理层可以参考引用[3],驱动层中的组件如解释器、编译器也来自引用[3]。执行引擎层可能涉及将任务提交到MapReduce,如引用[1]中提到的Hive将SQL转为MapReduce代码。 现在组织答案的结构,分四层,每层详细说明功能,并适当添加引用标注。最后生成相关问题。</think>### Hive四层架构详解 Hive的架构体系可分为四层,各层协同工作实现SQL到分布式计算任务的转换。根据功能划分如下: --- #### 1. **用户接口层** 提供多种访问方式,包括: - **CLI**(命令行界面):通过`hive`命令直接操作 - **JDBC/ODBC**:支持Java程序或其他工具通过数据库连接方式访问 - **WebGUI**:通过浏览器界面操作(需额外配置) 此层负责接收用户提交的HQL(Hive Query Language)语句,是用户与系统交互的入口[^3]。 --- #### 2. **元数据管理层(Metastore)** 存储Hive的核心元数据,包括: - 表名、列名、分区信息 - 表属性(如是否为外部表) - 数据存储路径(如HDFS目录地址) 元数据默认存储在嵌入式Derby数据库,但生产环境通常使用**MySQL**等关系型数据库,以支持高并发访问[^3]。 --- #### 3. **查询处理层(驱动层)** 负责HQL语句的解析与优化,核心组件包括: - **解释器**:完成词法分析、语法分析,生成抽象语法树 - **编译器**:将语法树转换为逻辑执行计划 - **优化器**:对执行计划进行优化(如谓词下推、分区裁剪) - **执行器**:将优化后的逻辑计划转换为物理计划(如MapReduce任务) 此层通过`Driver`模块协调各组件,最终生成可执行的作业代码[^3][^4]。 --- #### 4. **执行引擎层** 将物理计划提交到分布式计算框架执行,支持多种引擎: - **MapReduce**:默认引擎,适合离线批处理 - **Tez**:优化DAG执行,减少中间数据落盘 - **Spark**:基于内存计算,提升迭代任务效率 执行结果通过HDFS返回,数据存储格式支持文本、Parquet、ORC等[^1][^4]。 --- ### 架构协作流程示例 1. 用户通过CLI提交`SELECT * FROM table WHERE id>100;` 2. Metastore校验表结构及存储路径 3. 驱动层生成MapReduce任务代码 4. 执行引擎调用YARN资源,启动Task节点完成计算 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值