拓扑排序
正着贪心字典序最小肯定错。那我们要让小的尽量前,考虑找到一个反着的字典序最大的序列。
网上很少有证明,这里存一下证明。
反着拓扑排序时,如果有一次没有选择最大的那一个,则设当时最大的是A,选的是a,(A>a)。则假设最终序列为(S1)A(S2)a(S3),那么显然可以把A放到a后面,变成(S1)(S2)aA(S3),使得答案更优。
CSDN发神经了?突然变得非常慢并且发表文章还出了BUG???
#include<cstdio>
#include<cstring>
#include<queue>
#define N 100005
using namespace std;
namespace runzhe2000
{
int out[N], deg[N], ecnt, last[N]; struct edge{int next, to;}e[N];
void main()
{
int T, n, m; scanf("%d",&T);
for(; T--; )
{
memset(last,ecnt = 0,sizeof(last));
scanf("%d%d",&n,&m);
for(int i = 1, a, b; i <= m; i++)
{
scanf("%d%d",&b,&a);
e[++ecnt] = (edge){last[a], b};
last[a] = ecnt; deg[b]++;
}
priority_queue<int> q; int cnt = 0;
for(int i = 1; i <= n; i++) if(!deg[i]) q.push(i);
for(; !q.empty(); )
{
int x = q.top(); q.pop(); out[++cnt] = x;
for(int i = last[x]; i; i = e[i].next){int y = e[i].to; if(!--deg[y]) q.push(y);}
}
if(cnt != n) {puts("Impossible!");memset(deg,0,sizeof(deg));}
else {for(; cnt; cnt--) printf("%d ",out[cnt]); puts("");}
}
}
}
int main()
{
runzhe2000::main();
}