吴恩达机器学习课程笔记+代码实现(27)18.应用实例:图片文字识别(Application Example: Photo OCR)

本文介绍了吴恩达机器学习课程中的图片文字识别(OCR)应用,包括问题描述、文字侦测、字符切分和分类等步骤。通过滑动窗口技术检测和分割字符,并探讨了获取大量数据的方法以及上限分析在优化流程中的作用。
摘要由CSDN通过智能技术生成

18.应用实例:图片文字识别(Application Example: Photo OCR)


18.1 问题描述和流程图

       图像文字识别应用所作的事是,从一张给定的图片中识别文字。这比从一份扫描文档中识别文字要复杂的多。
       在这里插入图片描述

为了完成这样的工作,需要采取如下步骤:

  1. 文字侦测(Text detection)——将图片上的文字与其他环境对象分离开来

  2. 字符切分(Character segmentation)——将文字分割成一个个单一的字符

  3. 字符分类(Character classification)——确定每一个字符是什么
    可以用任务流程图来表达这个问题,每一项任务可以由一个单独的小队来负责解决:
           在这里插入图片描述

18.2 滑动窗口

       滑动窗口是一项用来从图像中抽取对象的技术。假使我们需要在一张图片中识别行人,首先要做的是用许多固定尺寸的图片来训练一个能够准确识别行人的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值