这是一道搜索题,用递归的方法枚举所有可能,但是要及早判断出有的局面不可行,从而推翻该局面,而不是在该局面下继续尝试,这就是剪枝。
因希望棍子尽可能短,因此枚举棍子长度的范围为从最长的那根木棒的长度,到木棒长度和的一半。如果都不成功,那么只能把所有木棒拼成一根棍子。枚举的时候,不需要每个长度都尝试,对于不是木棒长度和的因子的长度,可以直接否定。这是最容易也是最强的剪枝。
用一个二元组(R,M)表示当前状态,R表示剩下的木棒数目,M表示当前正在拼的那根棍子还缺少的长度。设总共有N节木棒,且假设最后的棍子长度都是L,则初始状态为(N, L),目标状态为(0,0)。
在拼一根棍子的时候,应该先拿长的木棒往上拼,因为长的木棒不好安排,选择少。
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int stk[70];
int vis[70];
int n;
int L; //要拼成的棍子的长度
bool cmp(int a,int b)
{
return a>b;
}
//还剩R根木棒,正在拼的棍子还缺M长度
bool dfs(int R,int M)
{
if(R==0 && M==0) return true;
if(M==0) //一根刚拼完,立即开始拼下一根
M=L;
for(int i=0;i<n;i++)
{
if(stk[i]<=M && !vis[i]) //遍历所有木棒
{
if(i>0)
{
if(!vis[i-1] && stk[i]==stk[i-1]) //剪枝,不要在同一位置多次尝试长度相同的木棒
continue;
}
vis[i]=1;
if(dfs(R-1,M-stk[i]))
return true;
else
{
vis[i]=0; //第i根木棒本次没法用
if(M==L || stk[i]==M) //剪枝,待拼棍子的第1根木棒或者最后1根木棒拼不成功,也不会替换,因为换了也没用
return false;
}
}
}
return false;
}
int main()
{
while(cin>>n && n)
{
int sum=0;
for(int i=0;i<n;i++)
{
cin>>stk[i];
sum+=stk[i];
}
sort(stk,stk+n,cmp); //从大到小排序,先排大的木棒
for(L=stk[0];L<=sum/2;L++)
{
if(sum%L!=0) continue;
memset(vis,0,sizeof(vis));
if(dfs(n,L))
{
cout<<L<<endl;
break;
}
}
if(L>sum/2) cout<<sum<<endl;
}
return 0;
}