【opencv】selective_search函数

TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。

TensorFlow可被用于语音识别图像识别等多项机器深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。TensorFlow将完全开源,任何人都可以用。

原生接口文章

  1. 【Tensorflow】tf.placeholder函数
  2. 【TensorFlow】tf.nn.conv2d是怎样实现卷积的
  3. 【TensorFlow】tf.nn.max_pool实现池化操作
  4. 【Tensorflow】tf.nn.relu函数
  5. 【Tensorflow】tf.reshape 函数
  6. 【Tensorflow】tf.nn.dropout函数
  7. 【Tensorflow】tf.argmax函数
  8. 【Tensorflow】tf.cast 类型转换 函数
  9. 【Tensorflow】tf.train.AdamOptimizer函数
  10. 【Tensorflow】tf.Graph()函数
  11. 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法
  12. 【Tensorflow】tf.dynamic_partition 函数 分拆数组
     原生接口实例

  1. 【Tensorflow】实现简单的卷积神经网络CNN实际代码
  2. 【Tensorflow 实战】实现欧式距离
        slim接口文章

  1. 【Tensorflow】tensorflow.contrib.slim 包
  2. 【Tensorflow slim】 slim.arg_scope的用法
  3. 【Tensorflow slim】slim.data包
  4. 【Tensorflow slim】slim evaluation 函数
  5. 【Tensorflow slim】slim layers包
  6. 【Tensorflow slim】slim learning包
  7. 【Tensorflow slim】slim losses包
  8. 【Tensorflow slim】slim nets包
  9. 【Tensorflow slim】slim variables包
  10. 【Tensorflow slim】slim metrics包
       slim 实例

  1. 【Tensorflow slim 实战】写MobileNet
  2. 【Tensorflow slim 实战】写Inception-V4 Inception-ResNet-v2结构
        kera 接口文章

  1. 【Tensorflow keras】Keras:基于Theano和TensorFlow的深度学习库
  2. 【Tensorflow keras】轻量级深度学习框架 Keras简介
        tensorflow使用过程中的辅助接口或通过tensorflow实现的批量操作接口

  1. 将非RGB图片转换为RGB图片
  2. 【opencv】python3 将图片生成视频文件
  3. 【opencv】selective_search函数

=========================================================================


selectivesearch.selectivesearch.selective_search (im_orig, scale=1.0, sigma=0.8, min_size=50) 函数
此函数并不是tensorflow中的,安装方式是pip install selectivesearch
此函数在物体识别中非常重要,一般在一个随意的图片来说,要识别物体的尺寸可能非常不固定,当我们把图片重定义到一个固定尺寸的时候,要识别的物体就非常不好识别了。
所以这函数的目的是,先找到图片中所有完整的物体,然后得到他们的尺寸,再对这些切出来的尺寸图片重新设置一个固定的尺寸,再来识别,这样准确率就高很多。。。


参数:
  • im_orig:输入图片
  • scale:表示felzenszwalb分割时,值越大,表示保留的下来的集合就越大
  • sigma:表示felzenszwalb分割时,用的高斯核宽度
  • min_size:表示分割后最小组尺寸


例:


import selectivesearch.selectivesearch as ss
import cv2

img = cv2.imread("RCNN/2flowers/jpg/0/image_0561.jpg")
img_lbl, regions = ss.selective_search(img, scale=1000, sigma=0.8, min_size=50)
for r in regions:
    x,y,h,w = r['rect']
    cv2.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 2)
cv2.imshow("img", img)
print("OK")
cv2.waitKey(0)
结果



修改size=1的效果


修改sigma=0.1结果


修改scale=100的结果


### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值