A Survey of Learned Indexes for the Multi-dimensional Space -2024
最近的研究趋势是将数据库索引结构视为机器学习 (ML) 模型。在此域中,训练单个或多个 ML 模型以学习从键到数据集内位置的映射。这类索引称为“学习索引”。学习的索引已证明改进了一维数据的搜索性能并减少了空间需求。一维学习索引的概念自然而然地扩展到多维(例如空间)数据,导致了“学习多维索引”的发展。本调查的重点是学习的多维指标结构。具体来说,它回顾了该研究领域的现状,解释了每种拟议方法背后的核心概念,并根据几个明确定义的标准对这些方法进行了分类。我们提出了一种分类法,对每个学习的多维索引进行分类和分类,并根据该分类法调查了关于学习多维索引的现有文献。此外,我们还提出了一个时间表来说明学习指数研究的演变。最后,我们强调了这个新兴和高度活跃的领域的几个开放挑战和未来的研究方向。
该综述是多维学习索引,分类很详细,主要对每个分类中典型论文进行了简要的解读,但是还是要看经典原文,因此本文就对综述中重要的内容进行总结,尤其是未来的工作,很有借鉴意义,其他部分跳过,直接引用原文。
注意:多维数据和高维数据。在多维数据的上下文中,我们假设数据的维度通常在 2 到 10 之间。在高维数据的上下文中,数据的维度可能非常高(例如,100)
一 背景