哈夫曼编码
给定一段文字,如果我们统计出字母出现的频率,是可以根据哈夫曼算法给出一套编码,使得用此编码压缩原文可以得到最短的编码总长。然而哈夫曼编码并不是唯一的。例如对字符串"aaaxuaxz",容易得到字母 ‘a’、‘x’、‘u’、‘z’ 的出现频率对应为 4、2、1、1。我们可以设计编码 {‘a’=0, ‘x’=10, ‘u’=110, ‘z’=111},也可以用另一套 {‘a’=1, ‘x’=01, ‘u’=001, ‘z’=000},还可以用 {‘a’=0, ‘x’=11, ‘u’=100, ‘z’=101},三套编码都可以把原文压缩到 14 个字节。但是 {‘a’=0, ‘x’=01, ‘u’=011, ‘z’=001} 就不是哈夫曼编码,因为用这套编码压缩得到 00001011001001 后,解码的结果不唯一,“aaaxuaxz” 和 “aazuaxax” 都可以对应解码的结果。本题就请你判断任一套编码是否哈夫曼编码。
输入格式:
首先第一行给出一个正整数 N(2≤N≤63),随后第二行给出 N 个不重复的字符及其出现频率,格式如下:
c[1] f[1] c[2] f[2] … c[N] f[N]
其中c[i]是集合{‘0’ - ‘9’, ‘a’ - ‘z’, ‘A’ - ‘Z’, ‘_’}中的字符;f[i]是c[i]的出现频率,为不超过 1000 的整数。再下一行给出一个正整数 M(≤1000),随后是 M 套待检的编码。每套编码占 N 行,格式为:
c[i] code[i]
其中c[i]是第i个字符;code[i]是不超过63个’0’和’1’的非空字符串。
输出格式:
对每套待检编码,如果是正确的哈夫曼编码,就在一行中输出"Yes",否则输出"No"。
注意:最优编码并不一定通过哈夫曼算法得到。任何能压缩到最优长度的前缀编码都应被判为正确。
输入样例:
7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11
解题思路
首先应该明确,要想符合最优编码需要满足两个条件
(1)满足最短长度
(2)满足无歧义编码
其中需要注意的是:满足哈夫曼编码的一定是最短长度,但是最短长度不一定是由哈夫曼编码得到,因此,最优编码可能与哈夫曼编码得到的编码不同
第一个条件的解决方案:建立哈弗曼树来计算最短长度
(1)将输入的一组评率全部建立成单个结点的树,用一个树地址数组保存
(2)从中挑选出最小权值的树,作为新树的左子树,挑选出次最小的树,作为右子树,组成一颗新的树,其中新的树的根结点的权等于左子树根结点的权加上右子树的根结点的权,将两个跳出的最小权的树从数组中删去,将新生成的树加入到这个数组
(3)重复第二个步骤,直到最后只剩下一颗树,即哈夫曼树
(4)左子树代表0,右子树代表1,可以得到每个字符的编码,此时根据这些字符的编码就可以计算出最短编码长度
第二个条件的解决方案:模拟二叉树的路径来判断前缀冲突
(1)根据n个字符的第一个字符的编码,以0-左子树,1-右子树对应来建立一颗树,称为原树,这棵树用于后面字符的比较,并且时刻根据后面字符的编码保持更新
(2)对于n个字符中剩余的字符的编码,依次读取其编码中的数字,用flag记录此数字对应在原树种的位置,0-左子树,1-右子树。
(3)当遇到字符编码中读取到“0”,那么要进行判断
1、如果原树对应位置没有左子树了,进行判断
如果原树对应位置是叶子结点,则必有歧义
如果原树对应位置不是叶子结点,那么为它建立起左子树
2、如果原树对应位置有左子树,先将flg移动,然后进行判断
如果此结点为叶子结点,则必有歧义
如果此数字已经是该字符的最后一个编码数字,则有歧义
(4)当遇到字符编码中读取到“1”,与“0”的情况类同
最后一步:当满足于哈夫曼编码长度相同,且无歧义编码,输出Yes,否则输出No
代码
#include<iostream>
#include<stdlib.h>
#include<string.h>
using namespace std;
typedef struct node {
//哈夫曼树结点类
node *parent = NULL; //双亲(根)
node *left = NULL; //左子树
node *right = NULL; //右子树
int weight; //权重
}node,*hfmtree;
int MIN(hfmtree *nodes,int n) {
//求最小权值对应下标,此下标和nodes中的下标对应一致
int min = nodes[0]->weight; //用于记录最小权值
int flag; //记录最小值的下标
for (int i = 0; i <= n - 1; i++) {
//找到最小值
if (nodes[i]->weight <= min) {
min = nodes[i]->weight;
flag = i;
}
}
return flag;
}
void deletenode(hfmtree *nodes, int n, int m) {
//删除已选中的最小值n为坐标,m为数组元素个数
for (int i = n; i <= m - 2; i++) {
nodes[i] = nodes[i + 1];
}
}
void insertnode(hfmtree *nodes,hfmtree newnode,int m) {
//插入新的树
nodes[m] = newnode;
}
int gethfmtreelength(hfmtree tree,int depth