Levenshtein Distance(编辑距离)算法与使用场景

点击上方蓝字 ↑↑ Throwable文摘

关注公众号设置星标,不定时推送高质量原创文章

关注

前提

已经很久没深入研究过算法相关的东西,毕竟日常少用,就算死记硬背也是没有实施场景导致容易淡忘。最近在做一个「脱敏数据和明文数据匹配」的需求的时候,用到了一个算法叫Levenshtein Distance Algorithm,本文对此算法原理做简单的分析,并且用此算法解决几个常见的场景。

什么是Levenshtein Distance

Levenshtein Distance,一般称为编辑距离(Edit DistanceLevenshtein Distance只是编辑距离的其中一种)或者莱文斯坦距离,算法概念是俄罗斯科学家弗拉基米尔·莱文斯坦(Levenshtein · Vladimir I)在1965年提出。此算法的概念很简单:Levenshtein Distance「两个字串之间,由一个转换成另一个所需的最少编辑操作次数」,允许的编辑操作包括:

  • 将其中一个字符替换成另一个字符(Substitutions)。

  • 插入一个字符(Insertions)。

  • 删除一个字符(Deletions)。

下文开始简称Levenshtein DistanceLD

Levenshtein Distance公式定义

这个数学公式最终得出的数值就是LD的值。举个例子:

kitten这个单词转成sittingLD值为3:

  1. kitten → sitten (k→s)

  2. sitten → sittin (e→i)

  3. sittin → sitting (insert a 'g')

Levenshtein Distance动态规划方法

可以使用动态规划的方法去测量LD的值,步骤大致如下:

  • 初始化一个LD矩阵(M,N)MN分别是两个输入字符串的长度。

  • 矩阵可以从左上角到右下角进行填充,每个水平或垂直跳转分别对应于一个插入或一个删除。

  • 通过定义每个操作的成本为1,如果两个字符串不匹配,则对角跳转的代价为1,否则为0,简单来说就是:

    • 如果[i][j]位置的两个字符串相等,则从[i][j]位置左加1,上加1,左上加0,然后从这三个数中取出最小的值填充到[i][j]

    • 如果[i][j]位置的两个字符串不相等,则从[i][j]位置左、左上、上三个位置的值中取最小值,这个最小值加1(或者说这三个值都加1然后取最小值),然后填充到[i][j]

  • 按照上面规则LD矩阵(M,N)填充完毕后,最终「矩阵右下角的数字」就是两个字符串的LD值。

这里不打算证明上面动态规划的结论(也就是默认这个动态规划的结果是正确的),直接举两个例子说明这个问题:

  • 例子一(两个等长字符串):sonsun

  • 例子二(两个非等长字符串):dogedog

「例子一:」

初始化LD矩阵(3,3)



son

0123
s1


u2


n3


计算[0][0]的位置的值,因为's' = 's',所以[0][0]的值 = min(1+1, 1+1, 0+0) = 0



son

0123
s10

u2


n3


按照这个规则计算其他位置的值,填充完毕后的LD矩阵`如下:



son

0123
s1012
u2112
n3221

那么sonsunLD值为1。

「例子二:」

初始化LD矩阵(4,3)



dog

0123
d1


o2


g3


e4


接着填充矩阵:



dog

0123
d1012
o2101
g3210
e4321

那么dogedogLD值为1。

Levenshtein Distance算法实现

依据前面提到的动态规划方法,可以相对简单地实现LD的算法,这里选用Java语言进行实现:

public enum LevenshteinDistance {

    // 单例
    X;

    /**
     * 计算Levenshtein Distance
     */
    public int ld(String source, String target) {
        Optional.ofNullable(source).orElseThrow(() -> new IllegalArgumentException("source"));
        Optional.ofNullable(target).orElseThrow(() -> new IllegalArgumentException("target"));
        int sl = source.length();
        int tl = target.length();
        // 定义矩阵,行列都要加1
        int[][] matrix = new int[sl + 1][tl + 1];
        // 首行首列赋值
        for (int k = 0; k <= sl; k++) {
            matrix[k][0] = k;
        }
        for (int k = 0; k <= tl; k++) {
            matrix[0][k] = k;
        }
        // 定义临时的编辑消耗
        int cost;
        for (int i = 1; i <= sl; i++) {
            for (int j = 1; j <= tl; j++) {
                if (source.charAt(i - 1) == target.charAt(j - 1)) {
                    cost = 0;
                } else {
                    cost = 1;
                }
                matrix[i][j] = min(
                        // 左上
                        matrix[i - 1][j - 1] + cost,
                        // 右上
                        matrix[i][j - 1] + 1,
                        // 左边
                        matrix[i - 1][j] + 1
                );
            }
        }
        return matrix[sl][tl];
    }

    private int min(int x, int y, int z) {
        return Math.min(x, Math.min(y, z));
    }

    /**
     * 计算匹配度match rate
     */
    public BigDecimal mr(String source, String target) {
        int ld = ld(source, target);
        // 1 - ld / max(len1,len2)
        return BigDecimal.ONE.subtract(BigDecimal.valueOf(ld)
                .divide(BigDecimal.valueOf(Math.max(source.length(), target.length())), 2, BigDecimal.ROUND_HALF_UP));
    }
}

算法的复杂度为O(N * M),其中NM分别是两个输入字符串的长度。这里的算法实现完全参照前面的动态规划方法推论过程,实际上不一定需要定义二维数组(矩阵),使用两个一维的数组即可,可以参看一下java-string-similarity中Levenshtein算法的实现。以前面的例子运行一下:

public static void main(String[] args) throws Exception {
    String s = "doge";
    String t = "dog";
    System.out.println("Levenshtein Distance:" +LevenshteinDistance.X.ld(s, t));
    System.out.println("Match Rate:" +LevenshteinDistance.X.mr(s, t));
}
// 输出
Levenshtein Distance:1
Match Rate:0.75

Levenshtein Distance算法一些使用场景

LD算法主要的应用场景有:

  • DNA分析。

  • 拼写检查。

  • 语音识别。

  • 抄袭侦测。

  • 等等......

其实主要就是"字符串"匹配场景,这里基于实际遇到的场景举例。

脱敏数据和明文数据匹配

最近有场景做脱敏数据和明文数据匹配,有时候第三方导出的文件是脱敏文件,格式如下:

姓名手机号身份证
张*狗123****8910123456****8765****

己方有明文数据如下:

姓名手机号身份证
张大狗12345678910123456789987654321

要把两份数据进行匹配,得出上面两条数据对应的是同一个人的数据,原理就是:当且仅当两条数据中手机号的LD值为4,身份证的LD值为8,姓名的LD值为1,则两条数据完全匹配。

使用前面写过的算法:

public static void main(String[] args) throws Exception {
    String sourceName = "张*狗";
    String sourcePhone = "123****8910";
    String sourceIdentityNo = "123456****8765****";
    String targetName = "张大狗";
    String targetPhone = "12345678910";
    String targetIdentityNo = "123456789987654321";
    boolean match = LevenshteinDistance.X.ld(sourceName, targetName) == 1 &&
            LevenshteinDistance.X.ld(sourcePhone, targetPhone) == 4 &&
            LevenshteinDistance.X.ld(sourceIdentityNo, targetIdentityNo) == 8;
    System.out.println("是否匹配:" + match);
    targetName = "张大doge";
    match = LevenshteinDistance.X.ld(sourceName, targetName) == 1 &&
            LevenshteinDistance.X.ld(sourcePhone, targetPhone) == 4 &&
            LevenshteinDistance.X.ld(sourceIdentityNo, targetIdentityNo) == 8;
    System.out.println("是否匹配:" + match);
}
// 输出结果
是否匹配:true
是否匹配:false

拼写检查

这个场景看起来比较贴近生活,也就是词典应用的拼写提示,例如输入了throwab,就能提示出throwable,笔者认为一个简单实现就是遍历t开头的单词库,寻找匹配度比较高(LD值比较小)的单词进行提示(实际上为了满足效率有可能并不是这样实现的)。举个例子:

public static void main(String[] args) throws Exception {
    String target = "throwab";
    // 模拟一个单词库
    List<String> words = Lists.newArrayList();
    words.add("throwable");
    words.add("their");
    words.add("the");
    Map<String, BigDecimal> result = Maps.newHashMap();
    words.forEach(x -> result.put(x, LevenshteinDistance.X.mr(x, target)));
    System.out.println("输入值为:" + target);
    result.forEach((k, v) -> System.out.println(String.format("候选值:%s,匹配度:%s", k, v)));
}
// 输出结果
输入值为:throwab
候选值:the,匹配度:0.29
候选值:throwable,匹配度:0.78
候选值:their,匹配度:0.29

这样子就可以基于输入的throwab选取匹配度最高的throwable

抄袭侦测

抄袭侦测的本质也是字符串的匹配,可以简单认为匹配度高于某一个阈值就是属于抄袭。例如《我是一只小小鸟》里面的一句歌词是:

我是一只小小小小鸟,想要飞呀飞却飞也飞不高

假设笔者创作了一句歌词:

我是一条小小小小狗,想要睡呀睡却睡也睡不够

我们可以尝试找出两句词的匹配度:

System.out.println(LevenshteinDistance.X.mr("我是一只小小小小鸟,想要飞呀飞却飞也飞不高", "我是一条小小小小狗,想要睡呀睡却睡也睡不够"));
// 输出如下
0.67

可以认为笔者创作的歌词是完全抄袭的。当然,对于大文本的抄袭侦测(如论文查重等等)需要考虑执行效率的问题,解决的思路应该是类似的,但是需要考虑如何分词、大小写等等各种的问题。

小结

本文仅仅对Levenshtein Distance做了一点皮毛上的分析并且列举了一些简单的场景,其实此算法在日常生活中是十分常见的,笔者猜测词典应用的单词拼写检查、论文查重(抄袭判别)都可能和此算法相关。算法虽然学习曲线比较陡峭,但是它确实是一把解决问题的利刃。Levenshtein Distance存在明显的优势和劣势:

  • 明显的劣势:算法的时间复杂度是O(M * N),存在两重循环,「效率比较低」

  • 明显的优势:根据此算法得到的匹配度或者说「结果和现实生活的真实场景最接近」

对于其劣势,可以考虑选择一些改良的编辑距离算法,这里就不做展开了。

参考资料:

  • 维基百科 - Levenshtein distance

  • java-string-similarity

  • The Levenshtein Algorithm

(本文完 e-a-20200308 r-a-20200716 封面图来源于《精灵剑客F》)

编辑距离算法是一种用来衡量字符串之间相似度的算法,它可以计算出将一个字符串转换为另一个字符串所需的最小操作数。 编辑距离的计算使用了Levenshtein distance算法,该算法由俄罗斯数学家Vladimir Levenshtein在1965年提出。它通过插入、删除和替换字符来计算两个字符串之间的距离。 算法的基本思想是逐个比较字符串中的字符,当字符不相同时,可以选择进行插入、删除或替换操作,使得两个字符相等,从而减小距离。通过一系列的操作,最后可以得到两个字符串相等的情况。 在计算过程中,算法使用了一个二维矩阵来表示两个字符串之间的距离。矩阵的行表示源字符串的字符,列表示目标字符串的字符。矩阵中的每个值表示在当前位置上,通过一系列操作所需的最小距离。通过动态规划的方式,算法逐步填充矩阵,直到计算得到整个矩阵。 计算编辑距离的过程是从左上角到右下角的遍历,每一步都考虑当前位置的字符是否相等,如果相等,则跳过该字符;如果不相等,则可以选择插入、删除或替换操作,并选择最小操作数。最后,右下角的值即为两个字符串之间的编辑距离编辑距离算法可以应用于许多领域,如拼写纠正、基因序列比对等。通过计算字符串之间的相似度,可以帮助我们理解文本、数据的相似性程度,从而提供更好的数据处理与分析效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Throwable文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值