莱文斯坦距离(编辑距离)算法 (Levenshtein Distance Algorithm)

莱文斯坦距离算法,又称编辑距离,由Vladimir Levenshtein提出,用于计算两个字符串通过替换、插入、删除操作转化为对方所需的最少次数。动态规划是常见的实现方法,其在字符串模糊匹配、拼写检查、DNA分析等领域有广泛应用。在PHP中,从4.0.1版本起提供了一个函数用于计算编辑距离,但计算大型字符串时仍可能耗时。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是 莱文斯坦距离算法 (Levenshtein Distance Algorithm) ?

Levenshtein Distance,莱文斯坦距离,通常被称为编辑距离(Edit Distance)。该算法的概念是俄罗斯科学家弗拉基米尔·莱文斯坦(Levenshtein · Vladimir)于1965年提出。

它是用来计算两个字串之间,通过替换、插入、删除等操作将字符串str1转换成str2所需要操作的最少次数。

也存在其他编辑距离的定义方式:例如 Damerau-Levenshtein 距离就是一种莱文斯坦距离的变种,但允许以单一操作交换相邻的两个字符(称为字符转置),如 AB→BA 的距离是 1(交换)而非 2(先删除再插入、或者两次替换); LCS(最长公共子序列)距离只允许删除、加入字元; Jaro 距离只允许字符转置; 汉明距离只允许取代字元。

例子:

kitten和sitting的莱文斯坦距离是3。将kitten变为sitting的最小处理方式如下:

  1. kitten →sitten(将k改为s)
  2. sitten → sittin(将e改为i)
  3. sittin → sitting(最后加入g)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值