求最大子数组之和

题目

在一个有N个元素的数组中,其中每个元素的值可正可负,在该数组中求一个连续子数组,使得该数组的和最大

思路

拿到这个题首先想到的是暴力法,即暴力循环求所有数组的和,因此可以求的该数组的最大值,其时间复杂度为O(N^3)
时间复杂度较高,我们可以用分治法动态规划来做这道题。其中分治法时间复杂度为O(N*logN),而动态规划为O(N)。

代码

暴力法:

private static void f1(int[] array) {
        if (array == null || array.length <= 0) {
            return;
        }
        if (array.length == 1) {
            System.out.println(array[0]);
        }

        int max = array[0];//最大值
        int start = 0; //数组的起始下标
        int end = 0;  //数组的终止下标
        for (int i = 0; i < array.length; i++) {
            for (int j = i; j < array.length; j++) {
                int sum = 0;
                for (int k = i; k <= j; k++) {
                    sum += array[k];
                }
                if (sum > max) {
                    max = sum;
                    start = i;
                    end = j;
                }
            }
        }
        for (int i = start; i <= end; i++) {
            System.out.print(array[i] + " ");
        }
        System.out.println("\n" + max);
    }

分治法

private static int f2(int[] array, int start, int end) {
        if (start == end) {
            return array[start];
        }
        int mid = (start + end) / 2;

        int m1 = f2(array, start, mid); // 最大值在前一半
        int m2 = f2(array, mid + 1, end); // 最大值在后一半

        int mf = array[mid];
        int sum = 0;
        for (int i = mid; i >= start; i--) {
            sum += array[i];
            if (sum > mf) {
                mf = sum;
                from = i;  //子数组的起始下标
            }
        }

        int mb = array[mid + 1];
        sum = 0;
        for (int i = mid + 1; i <= end; i++) {
            sum += array[i];
            if (sum > mb) {
                mb = sum;
                to = i; //子数组的终止下标
            }
        }
        int m3 = mf + mb;
        int res = 0;
        if (m1 > m2) {
            res = m1;
        } else {
            res = m2;
        }
        if (res < m3) {
            res = m3;
        }
        return res;
    }

动态规划:

// s[k+1] = max ( s[k]+a[k+1], a[k+1] ) 要么继续连续,要么断开
    private static int f3(int[] array, int start, int end) {
        int max = Integer.MIN_VALUE;
        int sum = array[start];
        for (int i = start + 1; i < end; i++) {
            if (sum < 0) {
                from = i;
                sum = array[i];
            } else {
                sum += array[i];
            }
            if (sum > max) {
                max = sum;
                to = i;
            }
        }
        return max;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值