shortest path of all vertex pairs

- repeated square, O(n^3*lgn), preceding m-1 edges + weight of one more edge. shortest path is choice of k with minimum weight of L(m)

l(m, i, j) = min(l(m-1, i, k) + w(k, j)), 1=<k<=n, 

L(1) = W

L(m) is, 


- Floyd-Warshall O(n^3)

d(i,j) = min(d(k-1, i, j), d(k-1, i, k) + d(k-1, k, j)

d(i,j) = w(i,j) if k = 0

- Johnson for sparse graph, O(VElgV)

add a start vertex, s, and edges to each vertices. w(s,v)=0

run Bellman-Ford from s,

set h(v) = d(s,v) for each vertex

set w'(u,v) = w(u,v) + h(u) - h(v) for each vertex to make it non-negative

run Dijkstra on each vertex to compute d'(u,v)

d(u,v) = d'(u,v) + h(v) - h(u)

Shortest Path


Problem DescriptionnnWhen YY was a boy and LMY was a girl, they trained for NOI (National Olympiad in Informatics) in GD team. One day, GD team’s coach, Prof. GUO asked them to solve the following shortest-path problem.nnThere is a weighted directed multigraph G. And there are following two operations for the weighted directed multigraph:nn(1) Mark a vertex in the graph.nn(2) Find the shortest-path between two vertices only through marked vertices.nnFor it was the first time that LMY faced such a problem, she was very nervous. At this moment, YY decided to help LMY to analyze the shortest-path problem. With the help of YY, LMY solved the problem at once, admiring YY very much. Since then, when LMY meets problems, she always calls YY to analyze the problems for her. Of course, YY is very glad to help LMY. Finally, it is known to us all, YY and LMY become programming lovers.nnCould you also solve the shortest-path problem?nnInputnnThe input consists of multiple test cases. For each test case, the first line contains three integers N, M and Q, where N is the number of vertices in the given graph, N≤300; M is the number of arcs, M≤100000; and Q is the number of operations, Q ≤100000. All vertices are number as 0, 1, 2, … , N - 1, respectively. Initially all vertices are unmarked. Each of the next M lines describes an arc by three integers (x, y, c): initial vertex (x), terminal vertex (y), and the weight of the arc (c). (c > 0) Then each of the next Q lines describes an operation, where operation “0 x” represents that vertex x is marked, and operation “1 x y” finds the length of shortest-path between x and y only through marked vertices. There is a blank line between two consecutive test cases.nnEnd of input is indicated by a line containing N = M = Q = 0.nnOutputnnStart each test case with "Case #:" on a single line, where # is the case number starting from 1.nnFor operation “0 x”, if vertex x has been marked, output “ERROR! At point x”.nnFor operation “1 x y”, if vertex x or vertex y isn’t marked, output “ERROR! At path x to y”; if y isn’t reachable from x through marked vertices, output “No such path”; otherwise output the length of the shortest-path. The format is showed as sample output.nnThere is a blank line between two consecutive test cases.nnSample Inputnn5 10 10 1 2 6335 0 4 5725 3 3 6963 4 0 8146 1 2 9962 1 0 1943 2 1 2392 4 2 154 2 2 7422 1 3 9896 0 1 0 3 0 2 0 4 0 4 0 1 1 3 3 1 1 1 0 3 0 4 0 0 0nnSample OutputnnCase 1: ERROR! At point 4 ERROR! At point 1 0 0 ERROR! At point 3 ERROR! At point 4


  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他