地铁线路图的设计与实现

本文介绍了一款名为MetroGraphApp的应用程序,该程序能够基于地铁线路数据,提供直观的操作界面,快速查找并绘制从任意起点到终点的乘车路线。通过实现地铁线路图的绘制与路径查找功能,程序不仅满足了高效、直观的需求,还提供了优化后的查找算法以减少换乘次数,并提高了查找速度。程序使用.NETWinForm和C#语言开发,数据以XML文件形式存储,整个过程充分体现了图论与计算机绘图技术的应用。
摘要由CSDN通过智能技术生成

 在北京、上海这样的一线城市,地铁绝对是上班族的首选交通工具,尽管有时挤得要命,但你真的找不出比地铁更准点的交通工具了。平时出门,我也总是习惯于在百度地图或丁丁地图里先查询一下地铁乘车路线,这些程序用起来非常方便。最近几天终于有点空余时间了,我就在想,我是否也可以写一个这样的程序?作为一名专业码农,我决定立刻动手。

 

    首先,我给地铁线路图程序MetroGraphApp设定了几个关键目标:

    1、  操作界面模仿百度地图,可以直接在线路图上设置起点和终点。

    2、  路径查找算法不能太慢,绝大多数情况下,必须小于1秒。

    3、  线路图数据必须是可配置的,适用于各个城市的地铁。

 

    在介绍实现方法之前,先看一下最终的效果图:                       

图 1

 

图 2

 

【技术准备】

    MetroGraphApp是一个.NET WinForm程序,开发工具是VS2010,开发语言是C#,绘图功能基于GDI+。线路图数据保存在一个XML文件中。查找路线时采用的是数据结构中的最短路径法。

 

【总体设计】

    地铁线路构成了数据结构中的图(Graph),站点是节点(Node),站点之间的通行路径就是链接(Link),也就是边(Edge)。由于所有通行路径都是双向的,所以,这是一个无向图。在图中任选两点,两点之间的连续路径(Path)就是我们要查找的乘车路线。

 

图 3

    在实际的地铁线路中,每条Link都属于一条线路(Line),例如:1号线、2号线,等等。两个站点之间可能有两条Link,它们分别属于不同的Line,这就是“双线并轨”。例如,在上海地铁线路中,“宝山路”到“宜山路”这段路径,“3号线”和“4号线”是在同一条轨道上运行的。如果是双线并轨,绘图的时候要并行绘制在一起。考虑到实用性和复杂性,我们在这里忽略多线并轨的情况。

 

整体类设计如下图所示:

 

图 4

    MetroGraphView类是一个自定义的UserControl,用于绘制MetroGraph所表示的地铁线路图。默认情况下是没有任何数据的,所需的线路数据是通过LoadFromFile来装载的,该方法可以从指定的XML文件中读取数据。

    在MetroGraphView控件上,用户可以通过鼠标点击的方式,选择起点和终点,然后控件会自动调用FindPath方法,获取两点之间的乘车路线(MetroPath),并将其绘制出来。

 

【源码实现】

MetroGraph、MetroNode、MetroLink、MetroLine、MetroPath类的实现都非常简单,这里不做过多解释,感兴趣的同学可以在文章末尾处下载源代码。

 

接下来,我们将重点介绍两个关键功能的实现:

1、  如何绘制线路图?

2、  如何查找乘车路线?

 

【如何绘制线路图】

地铁线路图的绘制可以分解为两个部分:节点绘制和链接绘制。

复制代码
/// <summary>
/// 绘制地铁线路图。
/// </summary>
/// <param name="g">绘图图面。</param>
/// <param name="graph">地铁线路图。</param>
private void PaintGraph(Graphics g, MetroGraph graph)
{
    //绘制地铁路径
    foreach (var link in graph.Links.Where(c => c.Flag >= 0))
         PaintLink(g, link);

    //绘制地铁站点
    foreach (var node in graph.Nodes)
        PaintNode(g, node);
}
复制代码

 

    细心的读者会发现,绘制Link的时候,有一个c.Flag>=0的筛选条件,这个Flag是干什么的呢?我来解释一下。

    由于地铁的行车路径都是双向的,所以,我们在构造MetroGraph的时候,两个Node之间的Link一定是成对出现的,这两条Link的方向是相反的。但是在绘图的时候,我们只需要绘制其中的一条即可。这里就有一个逻辑问题,当绘制一条Link的时候,如何判断其反向Link已经绘制过了?我用了一个最简单的办法,直接在Link上放一个标志Flag,如果Flag=0,则绘制,如果Flag=-1,则不绘制。这个Flag是在构造XML数据的时候直接填进去的。

    此外,Flag还有另外一个重要用途。文章前面提到过“双线并轨”的问题,例如图3中的A、B两个节点,他们之间存在Line3和Line4并轨的现象。对于并轨的两条Link,我们需要将其画成两条平行线,这两条线可能是水平线、垂直线,也可能是斜线。线之间没有空隙。如下图所示:

 

图 5

    如何绘制这样两条平行线呢?办法很简单,只要将线段分别向两边移动一定距离即可(Flag的值可以控制移动方向)。假如Link的宽度是5px,那么移动的距离应该是 2.5px,由于DrawLine时用的Pen默认是居中对齐的,这样就可以画出没有间隙的两条平行线。代码如下:

复制代码
/// <summary>
/// 绘制地铁站点间的线路。
/// </summary>
/// <param name="g">绘图图面。</param>
/// <param name="link">地铁站点间的线路。</param>
private void PaintLink(Graphics g, MetroLink link)
{
    Point pt1 = new Point(link.From.X, link.From.Y);
    Point pt2 = new Point(link.To.X, link.To.Y);

    using (Pen pen = new Pen(link.Line.Color, 5))
    {
        pen.LineJoin = LineJoin.Round;
        if (link.Flag == 0)
        {//单线
            g.DrawLine(pen, pt1, pt2);
        }
        else if (link.Flag > 0)
        {//双线并轨(如果是同向,则Flag分别为1和2,否则都为1)
            float scale = (pen.Width / 2) / Distance(pt1, pt2);

            float angle = (float)(Math.PI / 2);
            if (link.Flag == 2) angle *= -1;

            //平移线段
            var pt3 = Rotate(pt2, pt1, angle, scale);
            var pt4 = Rotate(pt1, pt2, -angle, scale);

            g.DrawLine(pen, pt3, pt4);
        }
    }
}
复制代码

 

    节点的绘制就要简单多了。节点由圆圈和标签构成,圆圈在上,标签在下。标签的位置,是个值得改进的问题,因为标签可能会把Link线条给盖住。在本程序中,我认为影响不是很大,所以,我把标签统一放在圆圈的下方。

    此外,对于可以换乘不同Line的站点,我们需要把圆圈画得大一些,这样更醒目。代码如下:

复制代码
/// <summary>
/// 绘制地铁站点。
/// </summary>
/// <param name="g">绘图图面。</param>
/// <param name="node">地铁站点。</param>
private void PaintNode(Graphics g, MetroNode node)
{
    //绘制站点圆圈
    Color color = node.Links.Count > 2 ? Color.Black : node.Links[0].Line.Color;
    var rect = GetNodeRect(node);
    g.FillEllipse(Brushes.White, rect);
    using (Pen pen = new Pen(color))
    {
        g.DrawEllipse(pen, rect);
    }

    //绘制站点名称
    var sz = g.MeasureString(node.Name, this.Font).ToSize();
    Point pt = new Point(node.X - sz.Width / 2, node.Y + (rect.Height >> 1) + 4);
    g.DrawString(node.Name, Font, Brushes.Black, pt);
}
复制代码

 

【如何查找乘车路线】

    这是图论中典型的路径搜索问题。当我处理这个问题的时候,我首先想到并实现的是最短路径法。最短路径法具有很强的现实意义,它表明路线比较节省时间。判断时间长短的办法由两个:一是通过累加Link上的权重(Weight)来判断,二是通过Link数量来判断。本文程序采用的是后者,因为根据实际经验,各个站点之间的运行时间是差不多的,以上海地铁为例,平均时间是大概3分钟一站。当然,我们没有考虑换乘的时间。代码如下:

复制代码
/// <summary>
/// 查找指定两个节点之间的最短路径。
/// </summary>
/// <param name="startNode">开始节点。</param>
/// <param name="endNode">结束节点。</param>
/// <param name="line">目标线路(为null表示不限制线路)。</param>
/// <returns>乘车路线列表。</returns>
private List<MetroPath> FindShortestPaths(MetroNode startNode, MetroNode endNode, MetroLine line)
{
    List<MetroPath> pathtList = new List<MetroPath>();
    if (startNode == endNode) return pathtList;

    //路径队列,用于遍历路径
    Queue<MetroPath> pathQueue = new Queue<MetroPath>();
    pathQueue.Enqueue(new MetroPath());

    while (pathQueue.Count > 0)
    {
        var path = pathQueue.Dequeue();

        //如果已经超过最短路径,则直接返回
        if (pathtList.Count > 0 && path.Links.Count > pathtList[0].Links.Count)
            continue;

        //路径的最后一个节点
        MetroNode prevNode = path.Links.Count > 0 ? path.Links[path.Links.Count - 1].From : null;
        MetroNode lastNode = path.Links.Count > 0 ? path.Links[path.Links.Count - 1].To : startNode;

        //继续寻找后续节点
        foreach (var link in lastNode.Links.Where(c => c.To != prevNode && (line == null || c.Line == line)))
        {
            if (link.To == endNode)
            {
                MetroPath newPath = path.Append(link);
                if (pathtList.Count == 0 || newPath.Links.Count == pathtList[0].Links.Count)
                {//找到一条路径
                    pathtList.Add(newPath);
                }
                else if (newPath.Links.Count < pathtList[0].Links.Count)
                {//找到一条更短的路径
                    pathtList.Clear();
                    pathtList.Add(newPath);
                }
                else break;//更长的路径没有意义
            }
            else if (!path.ContainsNode(link.To))
            {
                pathQueue.Enqueue(path.Append(link));
            }
        }
    }

    return pathtList;
}
复制代码

 

    上述算法在大多数情况下都运行得很好,但是存在两个不足之处:

    1、“较少换乘”这个优先性没有体现出来。程序给出的最短路径,往往有换乘1站甚至2站,而事实上有一条直达路线,只是该路线因为站点较多,被程序过滤掉了。

    2、对于相距太远的两个节点,查找时间可能很长,甚至达到1分钟之久。

 

    为了解决上述问题,我对算法进行了改进。

    首先,将直达路线的优先级设置为最高。就是说,如果两个站点之间有直达路线,就不要选择那些需要换乘的路线。

    其次,经过抽样统计,我发现直达或换乘一次就能到达目的地的概率高达80%,我相信地铁建设人员在设计的时候就已经考虑过这个问题了。既然这样,我可以对换乘一次的路线进行优先查找。假设起点是A,终点是B,它们的换乘点是C,那么,我可以先查出A->C的直达路线,再查出C->B的直达路线,然后将两条路线合并即可,这样可以显著降低时间复杂度。

    改进后代码如下:

复制代码
/// <summary>
/// 查找乘车路线。
/// </summary>
/// <param name="startNode">起点。</param>
/// <param name="endNode">终点。</param>
/// <returns>乘车路线。</returns>
public MetroPath FindPath(MetroNode startNode, MetroNode endNode)
{
    MetroPath path = new MetroPath();
    if (startNode == null || endNode == null) return path;
    if (startNode == endNode) return path;

    //如果起点和终点拥有共同线路,则查找直达路线
    path = FindDirectPath(startNode, endNode);
    if (path.Links.Count > 0) return path;

    //如果起点和终点拥有一个共同的换乘站点,则查找一次换乘路线
    path = FindOneTransferPath(startNode, endNode);
    if (path.Links.Count > 0) return path;

    //查找路径最短的乘车路线
    var pathList = FindShortestPaths(startNode, endNode, null);

    //查找换乘次数最少的一条路线
    int minTransfers = int.MaxValue;
    foreach (var item in pathList)
    {
        var curTransfers = item.Transfers;
        if (curTransfers < minTransfers)
        {
            minTransfers = curTransfers;
            path = item;
        }
    }
    return path;
}

/// <summary>
/// 查找直达路线。
/// </summary>
/// <param name="startNode">开始节点。</param>
/// <param name="endNode">结束节点。</param>
/// <returns>乘车路线。</returns>
private MetroPath FindDirectPath(MetroNode startNode, MetroNode endNode)
{
    MetroPath path = new MetroPath();

    var startLines = startNode.Links.Select(c => c.Line).Distinct().ToList();
    var endLines = endNode.Links.Select(c => c.Line).Distinct().ToList();

    var lines = startLines.Where(c => endLines.Contains(c)).ToList();
    if (lines.Count == 0) return path;

    //查找直达路线
    List<MetroPath> pathList = new List<MetroPath>();
    foreach (var line in lines)
    {
        pathList.AddRange(FindShortestPaths(startNode, endNode, line));
    }

    //挑选最短路线
    return GetShortestPath(pathList);
}

/// <summary>
/// 查找一次中转的路线。
/// </summary>
/// <param name="startNode">开始节点。</param>
/// <param name="endNode">结束节点。</param>
/// <returns>乘车路线。</returns>
private MetroPath FindOneTransferPath(MetroNode startNode, MetroNode endNode)
{
    List<MetroPath> pathList = new List<MetroPath>();

    foreach (var startLine in startNode.Links.Select(c => c.Line).Distinct())
    {
        foreach (var endLine in endNode.Links.Select(c => c.Line).Where(c=> c != startLine).Distinct())
        {
            //两条线路的中转站
            foreach (var transferNode in this.Graph.GetTransferNodes(startLine, endLine))
            {
                //起点到中转站的直达路线
                var startDirectPathList = FindShortestPaths(startNode, transferNode, startLine);

                //中转站到终点的直达路线
                var endDirectPathList = FindShortestPaths(transferNode, endNode, endLine);

                //合并两条直达路线
                foreach (var startDirectPath in startDirectPathList)
                {
                    foreach (var endDirectPath in endDirectPathList)
                    {
                        var directPath = startDirectPath.Merge(endDirectPath);
                        pathList.Add(directPath);
                    }
                }
            }
        }
    }

    //挑选最短路线
    return GetShortestPath(pathList);
}
复制代码

 

【总结】

    MetroGraphApp程序主要是应用了图论和GDI+的知识。最大的难点在于,如何更快地找出符合用户需要的乘车路线。

    传统的深度遍历方法不能很好地解决我们的问题,我们需要在遍历之前,对前方的路径进行一次侦测,然后把那些不需要的路径全部“剪除”掉,这样就可以显著提高性能。

    当然本文的算法并不能保证任意两点之间的路径,都能够在1秒之内找出,有些复杂的路径搜索还是会长达几十秒,只是这样的概率非常低。如果读者感兴趣,可以进一步研究改进。 

源代码下载(解压缩密码是:cnblogs)。

【版权声明】

1、对于本文描述的算法,以及提供的源代码,保留所有权利。

2、本文的源代码只是供大家学习、研究之用,不得用于商业目的。

3、如果想在其它网站或平台转载,请征得本人同意。

4、界面上的“起点”和“终点”两个图标,来源于网络,版本归原作者所有。

 

作者:Lave Zhang 
出处:http://www.cnblogs.com/lavezhang/ 
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

分类:  实用程序算法分析
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值