pytorch实现多层感知机分类minist数据集及可视化

import torch
import torch.utils.data as Data
import torch.nn as nn
from torchvision import datasets,transforms
import torchvision
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt

1.加载数据

transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.5,],std=[0.5,])])
data_train=datasets.MNIST(root="D:\jupyter_data",  transform=transform, train=True,
                          download=True
                          )
data_test=datasets.MNIST(root="D:\jupyter_data", transform=transform, train=False)
#按批获取数据
batch = 256
train_iter = Data.DataLoader(dataset=data_train, batch_size=batch, shuffle=True)
test_iter = Data.DataLoader(data_test,batch, shuffle=True)
print(test_iter)
<torch.utils.data.dataloader.DataLoader object at 0x0000020AE9927400>

2.定义和初始化模型

#输入层784,隐藏层20个神经元,输出10个
input_num, hidden_num, output_num=784,20,10
class FlattenLayer(nn.Module):  #数据处理层,将输入变为256 * 784
    def __init__(self):
            super(FlattenLayer, self).__init__()
    def forward(self, x): # x shape: (batch, *, *, ...)
         return x.view(x.shape[0], -1) 
        
net = nn.Sequential()
net.add_module('process', FlattenLayer())
net.add_module('linear',nn.Linear(input_num,hidden_num))
net.add_module('relu',nn.ReLU())
net.add_module('linear2',nn.Linear(hidden_num,output_num))
print(net)

#初始化模型参数
for param in net.parameters():
    nn.init.normal_(param, mean=0, std=0.01)
Sequential(
  (process): FlattenLayer()
  (linear): Linear(in_features=784, out_features=20, bias=True)
  (relu): ReLU()
  (linear2): Linear(in_features=20, out_features=10, bias=True)
)

3.定义损失函数和优化方法

loss = nn.CrossEntropyLoss()
optim = torch.optim.SGD(net.parameters(), lr=0.2)

4.训练模型

epoch_size = 2

for epoch in range(0, epoch_size+1):
    train_acc ,n ,train_loss = 0, 0, 0
    for X,y in train_iter:
        y_pre = net(X)
        l = loss(y_pre, y).sum()
        optim.zero_grad()
        l.backward()
        optim.step()
        
        train_acc += (y_pre.argmax(dim=1) == y).sum().item()
        n += y.shape[0]
        train_loss += l.item()
    print('epoch:%d, loss:%.4f, train_acc:%.4f'%(epoch+1, train_loss/n, train_acc/n))
epoch:1, loss:0.0052, train_acc:0.5317
epoch:2, loss:0.0030, train_acc:0.7506
epoch:3, loss:0.0020, train_acc:0.8430
def test_acc(test_iter, net):
    test_acc_count = 0
    n = 0
    for X,y in test_iter:
        y_pre = net(X)
        test_acc_count += (y_pre.argmax(dim=1) == y).sum().item()
        n += y.shape[0]
    print('test acc %.3f'% (test_acc_count/n))
test_acc(test_iter, net)
test acc 0.770

5.可视化

import collections
for X,y in train_iter:
    print(X[0][0].shape)
    out = X[0][0].numpy()
    feature_img = np.asarray(out * 255, dtype=np.uint8)
    plt.imshow(feature_img,cmap='gray')
    plt.show()
    y_pre = net(X)
    #获取最大值索引通过转为list
    pre = y_pre[0].tolist()
    print("预测:", pre.index(max(pre, key = abs)))
    break
torch.Size([28, 28])

在这里插入图片描述
预测: 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值