零基础入门数据挖掘 Task03: 数据的特征工程

这篇博客介绍了数据挖掘中的特征工程,包括数据导入、异常值处理、特征构造、数据分桶、归一化、类别特征的one-hot编码和特征筛选方法。通过实例展示了如何运用这些技术,如使用itemgetter获取数据、通过reset_index重置索引以及归一化处理等。
摘要由CSDN通过智能技术生成

Task03: 数据的特征工程

赛题:零基础入门数据挖掘 - 二手车交易价格预测
地址:https://tianchi.aliyun.com/competition/entrance/231784/information

1 内容介绍

在这里插入图片描述

2 代码示例

2.1导入数据

  • operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为一些索引或键值。
  • 注意:itemgetter 获取的不是值,而是定义了一个函数,通过该函数作用到目标对象上,取出目标对象对应维度的值,参考Python operator.itemgetter函数理解
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter 

%matplotlib inline
Train_data = pd.read_csv('used_car_train_20200313.csv', sep=' ')
Test_data = pd.read_csv('used_car_testA_20200313.csv', sep=' ')
print(Train_data.shape)
print(Test_data.shape)
Train_data.head()

在这里插入图片描述

print(Train_data.columns)
print(Test_data.columns)

在这里插入图片描述

2.2 删除异常值

  • | 运算符(按位或运算符:只要对应的二个二进位有一个为1时,结果位就为1)
  • reset_index用来重置索引,因为有时候对dataframe做处理后(修改排序,对DataFrame做完合并,或者做分组聚合(groupby,agg,transform等函数))索引可能是乱的,最好做一个reset_index处理。
    • drop=True表示在原有的索引列重置索引,不再另外添加新列。(drop=False:原有的索引不变添加列名index,同时在新列上重置索引)
    • inplace=True表示直接在原数组上对数据进行修改。(inplace=False:对数据进行修改,创建并返回新的对象承载其修改结果。)
# 这里包装了一个异常值处理的代码,可以随便调用。
def outliers_proc(data, col_name, scale=3):
    """
    用于清洗异常值,默认用 box_plot(scale=3)进行清洗
    :param data: 接收 pandas 数据格式
    :param col_name: pandas 列名
    :param scale: 尺度
    :return:
    """
    
    def box_plot_outliers(data_ser, box_scale):
        """
        利用箱线图去除异常值
        :param data_ser: 接收 pandas.Series 数据格式
        :param box_scale: 箱线图尺度,
        :return:
        """
        iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))
        val_low = data_ser.quantile(0.25) - iqr
        val_up = data_ser.quantile(0.75) + iqr
        rule_low = (data_ser < val_low) #判断data_ser是否小于val_low,得到truefalse
        rule_up = (data_ser > val_up) #判断data_ser是否大于val_low,得到truefalse

        return (rule_low, rule_up), (val_low, val_up)


    data_n = data.copy()
    data_series = data_n[col_name]
    rule, value = box_plot_outliers(data_series, box_scale=scale)
    index = np.arange(data_series.shape[0])[rule[0] | rule[1]] #取出数组rule中的数组1(rule_low)和数组2(rule_up)为true的index 
    print("Delete number is: {}".format(len(index)))
    data_n = data_n.drop(index)
    data_n.reset_index(drop=True, inplace=True) 
    print("Now column number is: {}".format(data_n.shape[0]))
    index_low = np.arange(data_series.shape[0])[rule[0]]
    outliers = data_series.iloc[index_low]
    print("Description of data less than the lower bound is:")
    print(pd.Series(outliers).describe())
    index_up = np.arange(data_series.shape[0])[rule[1]]
    outliers = data_series.iloc[index_up]
    print("Description of data larger than the upper bound is:")
    print(pd.Series(outliers).describe())
    
    fig, ax = plt.subplots(1, 2, figsize=(10, 7))
    sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])
    sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])
    return data_n
# 我们可以删掉一些异常数据,以 power 为例。  
# 这里删不删同学可以自行判断
# 但是要注意 test 的数据不能删 = = 不能掩耳盗铃是不是

Train_data = outliers_proc(Train_data, 'power', scale=3)

在这里插入图片描述

2.3 特征构造

# 训练集和测试集放在一起,方便构造特征
Train_data['train']=1
Test_data['train']=0
data = pd.concat([Train_data, Test_data], ignore_index=True) 
#ignore_index=true:合并的两个表会根据列字段对齐,然后合并。最后再重新整理一个新的index。
# 使用时间:data['creatDate'] - data['regDate'],反应汽车使用时间,一般来说价格与使用时间成反比
# 不过要注意,数据里有时间出错的格式,所以我们需要 errors='coerce'
data['used_time'] = (pd.to_datetime(data['creatDate'], format='%Y%m%d', errors='coerce') - 
                            pd.to_datetime(data['regDate'], format='%Y%m%d', errors='coerce')).dt.days
# 看一下空数据,有 15k 个样本的时间是有问题的,我们可以选择删除,也可以选择放着。
# 但是这里不建议删除,因为删除缺失数据占总样本量过大,15072/(150000+50000) = 7.5%
# 我们可以先放着,因为如果用XGBoost 之类的决策树,其本身就能处理缺失值,所以可以不用管;
data['used_time'].isnull().sum()

在这里插入图片描述

# 从邮编中提取城市信息,相当于加入了先验知识
data['city'] = data['regionCode'].apply(lambda x : str(x)[:-3])
data = data
# 计算某品牌的销售统计量,同学们还可以计算其他特征的统计量
# 这里要以 train 的数据计算统计量
#用groupby对brand列进行数据的分组以及分组后地组内运算,这里得到的结果是一个Groupby对象,还没有进行任何的运算。
Train_gb = Train_data.groupby("brand")
all_info = {}
for kind, kind_data in Train_gb:
    info = {}
    kind_data = kind_data[kind_data['price'] > 0]
    info['brand_amount'] = len(kind_data)
    info['brand_price_max'] = kind_data.price.max()
    info['brand_price_median'] = kind_data.price.median()
    info['brand_price_min'] = kind_data.price.min()
    info['brand_price_sum'] = kind_data.price.sum()
    info['brand_price_std'] = kind_data.price.std()
    info['brand_price_average'] = round(kind_data.price.sum() / (len(kind_data) + 1), 2)
    all_info[kind] = info

#字典转DataFrame,转置,增加序号列,改名“序号”为“品牌” 
print(pd.DataFrame(all_info))   
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={"index": "brand"})
data = data.merge(brand_fe, how='left', on='brand')

在这里插入图片描述

2.4 数据分桶

# 数据分桶 以 power 为例
# 这时候我们的缺失值也进桶了,
# 为什么要做数据分桶呢,原因有很多,= =
# 1. 离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展;
# 2. 离散后的特征对异常值更具鲁棒性,如 age>301 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;
# 3. LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
# 4. 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线形,提升了表达能力;
# 5. 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化

# 当然还有很多原因,LightGBM 在改进 XGBoost 时就增加了数据分桶,增强了模型的泛化性

#将data划分在指定的序列bin中,若不在该序列中,则是NaN。qcut是等频分桶。
bin = [i*10 for i in range(31)]
print(bin)
data['power_bin'] = pd.cut(data['power'], bin, labels=False)
print(data['power_bin'].max())
data[['power_bin', 'power']].head()

在这里插入图片描述

# 删除不需要的数据
data = data.drop(['creatDate', 'regDate', 'regionCode'], axis=1)
print(data.shape)
data.columns

在这里插入图片描述

# 目前的数据其实已经可以给树模型使用了,所以我们导出一下
data.to_csv('data_for_tree.csv', index=0)
# 我们可以再构造一份特征给 LR(Linear Regression) NN(Neural Network) 之类的模型用
# 之所以分开构造是因为,不同模型对数据集的要求不同
# 我们看下数据分布:
data['power'].plot.hist()

在这里插入图片描述
我们刚刚已经对 train 进行异常值处理了,但是现在还有这么奇怪的分布是因为 test 中的 power 异常值,所以我们其实刚刚 train 中的 power 异常值不删为好,可以用长尾分布截断来代替,这里插一段关于长尾截断的代码:

# 该代码实现了长尾截断的方式
def outliers_proc(data, col_name, scale=3):
    """
        用于截尾异常值, 默认用box_plot(scale=3)进行清洗
        param:
            data: 接收pandas数据格式
            col_name: pandas列名
            scale: 尺度
    """
    data_col = data[col_name]
    Q1 = data_col.quantile(0.25) # 0.25分位数
    Q3 = data_col.quantile(0.75)  # 0,75分位数
    IQR = Q3 - Q1
    
    data_col[data_col < Q1 - (scale * IQR)] = Q1 - (scale * IQR)
    data_col[data_col > Q3 + (scale * IQR)] = Q3 + (scale * IQR)
    
    fig, ax = plt.subplots()
    sns.boxplot(y=data[col_name], data=data, palette="Set1")

    return data[col_name]


Train_data_n = Train_data.copy()
Train_data_n['power'] = outliers_proc(Train_data_n, 'power')

在这里插入图片描述
让我们来看看删除异常值后的power的数据分布:

Train_data['power'].plot.hist()

在这里插入图片描述

2.5 归一化(MinMaxScaler)

# 我们对其取 log,在做归一化
from sklearn import preprocessing #导入数据预处理模块
min_max_scaler = preprocessing.MinMaxScaler()
print(data['power'])
data['power'] = np.log(data['power'] + 1) #这里加1是为了防止出现0而导致log后出现负无穷的情况

data['power'] = ((data['power'] - np.min(data['power'])) / (np.max(data['power']) - np.min(data['power'])))
data['power'].plot.hist()

在这里插入图片描述

# km 的比较正常,应该是已经做过分桶了
data['kilometer'].plot.hist()

在这里插入图片描述
其实,怎么看出kilometer的比较正常??

# 所以我们可以直接做归一化
data['kilometer'] = ((data['kilometer'] - np.min(data['kilometer'])) / 
                        (np.max(data['kilometer']) - np.min(data['kilometer'])))
data['kilometer'].plot.hist()

在这里插入图片描述

# 除此之外 还有我们刚刚构造的统计量特征:
# 'brand_amount', 'brand_price_average', 'brand_price_max',
# 'brand_price_median', 'brand_price_min', 'brand_price_std',
# 'brand_price_sum'
# 这里不再一一举例分析了,直接做变换,
def max_min(x):
    return (x - np.min(x)) / (np.max(x) - np.min(x))

data['brand_amount'] = ((data['brand_amount'] - np.min(data['brand_amount'])) / 
                        (np.max(data['brand_amount']) - np.min(data['brand_amount'])))
data['brand_price_average'] = ((data['brand_price_average'] - np.min(data['brand_price_average'])) / 
                               (np.max(data['brand_price_average']) - np.min(data['brand_price_average'])))
data['brand_price_max'] = ((data['brand_price_max'] - np.min(data['brand_price_max'])) / 
                           (np.max(data['brand_price_max']) - np.min(data['brand_price_max'])))
data['brand_price_median'] = ((data['brand_price_median'] - np.min(data['brand_price_median'])) /
                              (np.max(data['brand_price_median']) - np.min(data['brand_price_median'])))
data['brand_price_min'] = ((data['brand_price_min'] - np.min(data['brand_price_min'])) / 
                           (np.max(data['brand_price_min']) - np.min(data['brand_price_min'])))
data['brand_price_std'] = ((data['brand_price_std'] - np.min(data['brand_price_std'])) / 
                           (np.max(data['brand_price_std']) - np.min(data['brand_price_std'])))
data['brand_price_sum'] = ((data['brand_price_sum'] - np.min(data['brand_price_sum'])) / 
                           (np.max(data['brand_price_sum']) - np.min(data['brand_price_sum'])))

2.6 对类别特征进行 one-hot编码

  • get_dummies函数实现one-hot encode的方式
# 对类别特征进行 OneEncoder
data = pd.get_dummies(data, columns=['model', 'brand', 'bodyType', 'fuelType',
                                     'gearbox', 'notRepairedDamage', 'power_bin'])
print(data.shape)
data.columns

在这里插入图片描述

# 这份数据可以给 LR 用
data.to_csv('data_for_lr.csv', index=0)

2.7 特征筛选

1)过滤式

# 相关性分析
print(data['power'].corr(data['price'], method='spearman'))
print(data['kilometer'].corr(data['price'], method='spearman'))
print(data['brand_amount'].corr(data['price'], method='spearman'))
print(data['brand_price_average'].corr(data['price'], method='spearman'))
print(data['brand_price_max'].corr(data['price'], method='spearman'))
print(data['brand_price_median'].corr(data['price'], method='spearman'))

在这里插入图片描述

# 当然也可以直接看图
data_numeric = data[['power', 'kilometer', 'brand_amount', 'brand_price_average', 
                     'brand_price_max', 'brand_price_median']]
correlation = data_numeric.corr()

f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True,  vmax=0.8)

在这里插入图片描述
2)包裹式

# k_feature 太大会很难跑,没服务器,所以提前 interrupt 了

from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.linear_model import LinearRegression
sfs = SFS(LinearRegression(),
           k_features = 10,
           forward = True,
           floating = False,
           scoring = 'r2',
           cv = 0)
 
x = data.drop(['price'], axis = 1)
x = x.fillna(0)
y = data['price'].fillna(0)
sfs.fit(x,y)
sfs.k_feature_names_ 

# 画出来,可以看到边际效益
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
import matplotlib.pyplot as plt
fig1 = plot_sfs(sfs.get_metric_dict(), kind='std_dev')
plt.grid()
plt.show()

2)嵌入式

# 下一章介绍,Lasso 回归和决策树可以完成嵌入式特征选择
# 大部分情况下都是用嵌入式做特征筛选

参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值