题目要求:(剑指Offer重建二叉树)输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
思路:对于给出的前序遍历和中序遍历数组,前序遍历的第一个节点一定是对应二叉树的根节点,找到该节点在中序序列中的位置,那么在中序序列中该节点的前面的节点为左子树,后面的节点为右子树。此时,需要对左右子树进行判断,如果左(右)子树长度为0,那么返回null,否则继续对其执行迭代判断。
代码实现(Java):
public class Solution {
public static class TreeNode{
int value;
TreeNode left;
TreeNode right;
TreeNode(int x) { value = x; }//构造方法
}
//主函数
public static void main(String[] args) {
int[] pre={1,2,4,7,3,5,6,8};
int[] in={4,7,2,1,5,3,8,6};
TreeNode tn=reConstructBinaryTree(pre,in);
printTree(tn);
}
//重建二叉树函数
public static TreeNode reConstructBinaryTree(int [] pre,int [] in) {
TreeNode tn=new TreeNode(pre[0]);
tn.value=pre[0];
if(pre.length==1){//如果数组长度为1,直接置其左右子树为空,返回该树
tn.left=null;
tn.right=null;
return tn;
}
int i=0;
for(i=0;i<pre.length;i++){//找出根节点在中序遍历数组中的位置
if(tn.value==in[i]){
break;
}
}
if(i>0){
//创建左子树
int[] leftpre=new int[i];
int[] leftin=new int[i];
for(int j=0;j<i;j++){
leftpre[j]=pre[j+1];//左子树的前序序列
leftin[j]=in[j];//左子树的中序序列
}
tn.left=reConstructBinaryTree(leftpre,leftin);//对左子树进行判断
}else
tn.left=null;
if(pre.length-1-i>0){
//创建右子树
int[] rightpre=new int[pre.length-1-i];
int[] rightin=new int[pre.length-1-i];
for(int j=0;j<pre.length-1-i;j++){
rightpre[j]=pre[j+1+i];
rightin[j]=in[j+1+i];
}
tn.right=reConstructBinaryTree(rightpre,rightin);
}else
tn.right=null;
return tn;
}
//先序打印二叉树
public static void printTree(TreeNode tn){
if(tn!=null){
printTree(tn.left);
System.out.println(tn.value);
printTree(tn.right);
}
}
}