大数据培训EvnetTimeWindow API之会话窗口

该代码示例展示了如何在ApacheFlink中使用EventTimeSessionWindows进行时间窗口操作。它首先创建了一个流处理环境,设置了事件时间特性,并通过socketTextStream读取数据。然后,它为数据流分配时间戳和水印,基于事件时间进行键控,并定义了500毫秒的时间窗口进行聚合操作。最后,对窗口结果进行了打印和并行化执行。
摘要由CSDN通过智能技术生成

会话窗口(EventTimeSessionWindows)

相邻两次数据的EventTime的时间差超过指定的时间间隔就会触发执行。如果加入Watermark, 会在符合窗口触发的情况下进行延迟。到达延迟水位再进行窗口触发。

def main(args: Array[String]): Unit = {

// 环境

val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

env.setParallelism(1)

val dstream: DataStream[String] = env.socketTextStream(“hadoop1”,7777)

val textWithTsDstream: DataStream[(String, Long, Int)] = dstream.map { text =>

val arr: Array[String] = text.split(” “)

(arr(0), arr(1).toLong, 1)

}

val textWithEventTimeDstream: DataStream[(String, Long, Int)] = textWithTsDstream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[(String, Long, Int)](Time.milliseconds(1000)) {

override def extractTimestamp(element: (String, Long, Int)): Long = {

return element._2

}

})

val textKeyStream: KeyedStream[(String, Long, Int), Tuple] = textWithEventTimeDstream.keyBy(0)

textKeyStream.print(“textkey:”)

val windowStream: WindowedStream[(String, Long, Int), Tuple, TimeWindow] = textKeyStream.window(EventTimeSessionWindows.withGap(Time.milliseconds(500)) )

windowStream.reduce((text1,text2)=>

( text1._1,0L,text1._3+text2._3)

) .map(_._3).print(“windows:::”).setParallelism(1)

env.execute()

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值