pandas中DataFrame通过行选择数据

这篇博客介绍了在pandas中如何通过行选择数据。文章提到,现在推荐使用.loc()和.iloc()方法,而非过时的.ix()。.loc()根据列名选择,而.iloc()则基于整数位置进行选择。示例演示了这两种方法的用法。
摘要由CSDN通过智能技术生成
import pandas as pd
import numpy as np
from pandas import Series, DataFrame

首先日常导入。

data = DataFrame(np.arange(16).reshape(4,4), index=['Ohio', 'Colorado', 'Utah', 'New York'], columns=['one', 'two', 'three', 'four'])

创建一个数据框,结果如下。


新版pandas中,使用了.loc() 和 iloc()两种方法代替以前的ix(),当然.ix()还是可以继续使用的。而.loc()和.iloc()的区别在于,前者是用index和column的字符串形式选择,后者是通过整数的形式选择(i for integer),举例如下。

data.loc[['Ohio', 'Utah']]

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值