python开源的etl工具,eclat算法python

大家好,本文将围绕python开源的etl工具展开说明,eclat算法python是一个很多人都想弄明白的事情,想搞清楚etl代码python需要先了解以下几个事情。

Source code download: 本文相关源码

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对于给定的输入X,利用贝叶斯定理后验概率最大的输出Y用python画雪人的代码

朴素贝叶斯方法 = 贝叶斯公式 + 条件独立假设(等于是说用于分类的特征在类确定的条件下都是条件独立的)。

贝叶斯公式:

e9fcd58eccc72fb594b36a48d3199975.png

其中P(Y)叫做先验概率,P(Y|X)叫做后验概率,P(Y,X)叫做联合概率;

1)P(“属于某类”|“具有某特征”)=在已知某样本“具有某特征”的条件下,该样本“属于某类”的概率。所以叫做『后验概率』;

2)P(“具有某特征”|“属于某类”)=在已知某样本“属于某类”的条件下,该样本“具有某特征”的概率;

3)P(“属于某类”)=在未知某样本具有该“具有某特征”的条件下,该样本“属于某类”的概率。所以叫做『先验概率』;

4)P(“具有某特征”)=在未知某样本“属于某类”的条件下,该样本“具有某特征”的概率。

由于计算时具有某特征而属于某类无法直接通过统计得到,比如有十个属性而求相应类概率是比较复杂的,但是反过来求对应类会有那些属性概率则可以通过统计得到,因此需要用到上面所说的概率公式将其转换。当然朴素贝叶斯算法有个更加强的假设,就是属性间相互独立,也就是概率可以进行相乘,这也是“朴素”贝叶斯的来源:

752080731ce6fb101bd0152cf8c51dbd.png

当特征属性为连续值时,通常假定其值服从高斯分布(也称正态分布)。

后验概率最大化的含义:等同于期望风险最小化;

后验概率最大化:在给定输入,通过学习到的模型计算后验概率,将后验概率最大的类作为特征的输出类;

dfc6d74aca50e52f0151b66e211c65e5.png

假设是解决一个二类问题,选择的是0-1损失函数:

fa0e4569193c9ce8932262b2ff813725.png

此时优化的目标是期望最小化

26efffc83cacaeeb6e9b5d6e14d92e8b.png

期望是对联合分布取得,由此取条件期望

8f590cd4b460275110e16ce98b94b7f4.png

为了使期望最小,只需要对逐个X=x最小,由此得到

91af2149d910a89ce0c70520c658ea8b.png

这样根据期望最小就得到了后验概率z最大化准则:

83510329d43addf8d99e77cd31e3a1c1.png

即朴素贝叶斯采用的原理。

用python基于朴素贝叶斯实现垃圾邮件过滤,该段代码主要参考机器学习实战;

#---------------------------
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值