每天一点TF
jinmingz
ASR SRE DeepLearning
展开
-
TF中的tf.Variable 和 tf.placehold 的区别
参考自: https://stackoverflow.com/questions/36693740/whats-the-difference-between-tf-placeholder-and-tf-variable从使用来说: tf.placehold 占位符。 主要为真实输入数据和输出标签的输入, 用于在 feed_dict中的变量,不需要指定初始值,具体值在feed_dict中的变量给出。原创 2017-07-16 13:30:44 · 2990 阅读 · 0 评论 -
TF多层 LSTM 以及 State 之间的融合
第一是实现多层的LSTM的网络;第二是实现两个LSTM的state的concat操作, 分析 state 的结构.对于第一个问题,之前一直没有注意过, 看下面两个例子:在这里插入代码片import tensorflow as tfnum_units = [20, 20]#Unit1, OK# X = tf.random_normal(shape=[3, 5, 6], dtype=...原创 2019-02-21 18:07:25 · 1172 阅读 · 0 评论 -
tf.strided_slice() 函数
这个函数本身的注释看起来不太清晰, 这里举个小例子, 介绍一下最基本的用法:首先参数列表是 tf.strided_slice(input, begin, end, stride, ...)tf.fill( dims, value, name=None)dims 是1-D的向量表示shape, value 是一个实数, 表示整个矩阵填充的值. 实例: 定义 decoder_input...原创 2019-01-03 11:20:03 · 700 阅读 · 0 评论 -
tf.tile() 和 tf.contrib.seq2seq.tile_batch()
简单介绍这两个函数的基本用法, 以及区别. 以及在 BeamSearch 的时候用哪个?# 将input的某一维度复制多少次, len(input.shape()) 等于 len(multiples)# tf.tile(input, multiples, name=None)t = tf.constant([[1, 1, 1, 9], [2, 2, 2, 9], [7, 7, 7, 9]]...原创 2019-01-03 18:02:16 · 1965 阅读 · 0 评论 -
tensorflow 中的获取动态获取 BatchSzie 的大小
import tensorflow as tfimport syswith tf.variable_scope('ha'): a1 = tf.get_variable('a', shape=[], dtype=tf.int32) with tf.variable_scope('haha'): a2 = tf.get_variable('a', shape=[]...原创 2018-10-07 16:39:05 · 5792 阅读 · 0 评论 -
TF中tensor值的打印问题(+eager)
好久没用tensorflow, 现在感觉各种不适应,关于tensor值的打印的几种情况,整理一下,备自己忘的时候再翻翻。Case1: tensor是一个常量 constant>>> import tensorflow as tf>>> a = tf.constant([1,2], name='a')>>> sess = tf.InteractiveSession() >>> a.eval()原创 2017-07-21 15:09:41 · 4519 阅读 · 0 评论 -
tfrecords notice
tfrecords is not support random access! tfrecords is not support read by the index!转载 2017-10-31 21:55:31 · 425 阅读 · 0 评论 -
relu和crelu使用
之前不了解crelu,随便将网络中的relu换成crelu, 然后调了半天的bug。 —–自己写bug,自己调bug, 死循环ing ——先看写一段代码:import tensorflow as tfimport collectionsslim = tf.contrib.slimweights_initializer = tf.contrib.layers.xavier_initializer原创 2017-08-23 17:53:18 · 3434 阅读 · 0 评论 -
TF 中保存恢复模型时,关于变量的name问题
在使用 tf.train.Saver() 来保存模型和使用 已有模型 来测试的时候,关于保存的变量(tf.Variable)需要注意的几种情况:Case1: 训练时,变量没有name属性, 恢复时也没有name属性. 这是必须要保证 在train的代码里定义的变量的顺序和test的变量的定义的顺序 一致! 否则会报错Case2: 训练时,变量有name属性, 恢复时没有name属性, 或者训练没有原创 2017-07-16 13:52:04 · 1221 阅读 · 0 评论 -
seq2seq模型中最后的Loss该如何计算
#!coding=utf-8import numpy as npimport tensorflow as tffrom tensorflow.contrib.seq2seq import sequence_loss'''为了探究 seq2seq 中的loss具体改如何计算, 依据的标准是 tensorflow.contrib.seq2seq.sequence_loss'''# l...原创 2019-03-24 16:37:18 · 5694 阅读 · 0 评论