numpy.newaxis

第一次见到这个东西,来研究一下:

从字面上是插入新的维度的意思

demo1: 针对一维的情况

>>> b = np.array([1, 2, 3, 4, 5, 6])
>>> b[np.newaxis]
array([[1, 2, 3, 4, 5, 6]])
>>> c = b[np.newaxis]  #equals c = b[np.newaxis,:]
>>> b.shape
(6,)
>>> c.shape
(1, 6)
#看一下转置的时候有什么区别
>>> np.transpose(b)
array([1, 2, 3, 4, 5, 6])
>>> np.transpose(c)
array([[1],
       [2],
       [3],
       [4],
       [5],
       [6]])

#可以看出在矩阵运算的时候还是需要新的维度来规范计算的

对于这个问题还有一种方法,偶然看sidekit源码发现的;

>>> a = np.array([1,2,3])
>>> a
array([1, 2, 3])
>>> b = a[None]
>>> b
array([[1, 2, 3]])
>>> a.shape
(3,)
>>> b.shape
(1, 3)

demo2: 多维的还没用到,占坑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值