二分图匹配学习笔记

今天遇见了一道二分图匹配的题,毫无疑问,zjq挂了,所以特地学习学习二分图匹配。

定义介绍:

二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图。准确地说:把一个图的顶点划分为两个不相交集 U U V V ,使得每一条边都分别连接 U U V V中的顶点。如果存在这样的划分,则此图为一个二分图。二分图的一个等价定义是:不含有「含奇数条边的环」的图。图 1 是一个二分图。为了清晰,我们以后都把它画成图 2 的形式。

匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。例如,图 3、图 4 中红色的边就是图 2 的匹配。

Bipartite Graph(1)  Bipartite Graph(2)  Matching  Maximum Matching

我们定义匹配点匹配边未匹配点非匹配边,它们的含义非常显然。例如图 3 中 1、4、5、7 为匹配点,其他顶点为未匹配点;1-5、4-7为匹配边,其他边为非匹配边。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。图 4 是一个最大匹配,它包含 4 条匹配边。

完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。图 4 是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。

举例来说:如下图所示,如果在某一对男孩和女孩之间存在相连的边,就意味着他们彼此喜欢。是否可能让所有男孩和女孩两两配对,使得每对儿都互相喜欢呢?图论中,这就是完美匹配问题。如果换一个说法:最多有多少互相喜欢的男孩/女孩可以配对儿?这就是最大匹配问题。

0

下面讲一讲匈牙利算法,给出相关概念:

交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边…形成的路径叫交替路。

增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。例如,图 5 中的一条增广路如图 6 所示(图中的匹配点均用红色标出):

6

增广路有一个重要特点:非匹配边比匹配边多一条。因此,研究增广路的意义是改进匹配。只要把增广路中的匹配边和非匹配边的身份交换即可。由于中间的匹配节点不存在其他相连的匹配边,所以这样做不会破坏匹配的性质。交换后,图中的匹配边数目比原来多了 1 条。

我们可以通过不停地找增广路来增加匹配中的匹配边和匹配点。找不到增广路时,达到最大匹配(这是增广路定理)。匈牙利算法正是这么做的

 

下面给出匈牙利算法的DFS版本:

struct Edge{
	int from,to,weight;
	Edge(int f,int t,int w):from(f),to(t),wight(w){}
};
vector <int> G[max_Nodes]; //邻接表存图
vector <Edge> edges;
typedef vector <int>::iterator iterator_t;
int num_nodes,num_left,num_right,num_edges;
int matching[max_Nodes];	//存储求解结果
int check[max_Nodes];

bool dfs(int u)
{
	for(iterator_t i = G[u].begin(); i != G[u].end(); ++i)	
	{
		int v = edges[*i].to;
		if(!check[v])	//要求不在增广路中 
		{
			check[v] = true;	//放入增广路中 
			if(matching[v] == -1 || dfs(matching[v]))
			{	//如果是未盖点说明是交替路为增广路,则交换路径,并返回成功 
				matching[v] = u;
				matching[u] = v;
				return true;
			}
		}
	}
	return false;	//不存在增广路,返回失败 
 } 
int hungarian()
{
	int ans = 0;
	memset(matching,-1,sizeof(matching));
	for(int u = 0; u < num_left; ++u)
	{
		if(matching[u] == -1)
		{
			memset(check,0,sizeof(check));
			if(dfs(u)) ++ans;
		}
	}
	return ans;
}


下面给出BFS版本

struct Edge{
	int from,to,weight;
	Edge(int f,int t,int w):from(f),to(t),wight(w){}
};
vector <int> G[max_Nodes]; //记录有边 
vector <Edge> edges;
queue <int> Q;
typedef vector <int>::iterator iterator_t;
int prev[max_Nodes];
int num_nodes,num_left,num_right,num_edges;
int matching[max_Nodes];	//存储求解结果
int check[max_Nodes];
int Hungarian()
{
	int ans = 0;
	memset(matching,-1,sizeof(matching));
	memset(check,-1,sizeof(check));
	for(int i = 0 ; i < num_left ; ++i)
	{
		if(matching[i] == -1)
		{
			while(!Q.empty())	Q.pop();
			Q.push(i);
			prev[i] = -1;	//设i为路径起点
			bool flag = false;	//设未找到增广路
			while(!Q.empty() && !flag)
			{
				int u = Q.front();
				for(iterator_t ix = G[u].begin(); ix <= G[u].end() && !flag; ++ix)
				{
					int v = edges[*ix].to;
					if(check[v] != i)
					{
						check[v] = i;
						Q.push(matching[v]);
						if(matching[v] >= 0)	//此点为匹配点 
							prev[matching[v]] = u;
						else 
						{		//找到未匹配点,交替路变成增广路 
							flag = true;
							int d = u, e = v;
							while(d != -1)
							{
								int t = matching[d];
								matching[d] = e;
								matching[e] = d;
								d = prev[d];
								e = t;
							}
						}
					}
				}
				Q.pop();
			 }
			if(matching[i] != -1) ++ans; 
		}
	}
	return ans;
}


 

真正求二分图的最大匹配的题目很少,往往做一些简单的变化

变种1:二分图的最小顶点覆盖
在二分图中求最少的点,让每条边都至少和其中的一个点关联,这就是“二分图的最小顶点覆盖”。
hdoj1150
二分图的最小顶点覆盖数 = 二分图的最大匹配数


变种2:DAG图(无回路有向图)的最小路径覆盖
用尽量少的不相交简单路径覆盖有向无环图(DAG)的所有顶点,这就是DAG图的最小路径覆盖问题。
hdoj1151
DAG图的最小路径覆盖数 = 节点数(n)- 最大匹配数(m)
关键:求二分图的最大匹配数


变种3: 二分图的最大独立集
hdoj1068
二分图的最大独立集数 = 节点数(n)- 最大匹配数(m)
关键:求二分图的最大匹配数

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值