BERT代码逐行逐句详解版(pytorch版本)

最近入门BERT,在网上观看了一些网课视频理解了原理,并且找到了pytorch版本的源码,经过一遍阅读有了初步的认知,所以在此记录,温故而知新。

本文所解读的源码链接为:https://github.com/daiwk/BERT-pytorch/tree/master/bert_pytorch

其整体代码框架如下(有些部分我也略有改动,但整体不影响):

 解读一个项目的代码,自然要从main开始,所以我们打开main.py(项目中是__main__.py)后看到首先是对一些路径参数的填写:

 我个人的上述自个的参数为

--train_dataset ./corpus/train.tsv --test_dataset ./corpus/test.tsv --vocab_path ./vocab/vocab.txt --output_path output/bert.model

其中train_dataset和test_dataset是指你选的任务的训练数据和测试数据,我们一般称之为corpus(语料库)这里我们选取了GLUE数据集中的MRPC任务的训练集和测试集。而vocab_path指的是vocabulary库(词汇表库),它相当于一个大字典,记录了所有可能出现的单词,后边我们将语料库中的单词转为id时候需要在这个大字典里查找(这个vocab.txt可以去huggingface上找,GLUE数据集网上有许多好心人分享了网盘,但是需要注意的是不同的任务数据的样式是不同的,所以处理起来是有差别的!!比如说有的数据是一个类+一个句子+一个句子,有的是一个类+一个句子)

接下来我将以main函数中每行代

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值