题目描述:
给你一个由数字和运算符组成的字符串 expression ,按不同优先级组合数字和运算符,计算并返回所有可能组合的结果。你可以 按任意顺序 返回答案。
生成的测试用例满足其对应输出值符合 32 位整数范围,不同结果的数量不超过 104 。
示例 1:
输入:expression = “2-1-1”
输出:[0,2]
解释:
((2-1)-1) = 0
(2-(1-1)) = 2
示例 2:
输入:expression = “23-45”
输出:[-34,-14,-10,-10,10]
解释:
(2*(3-(45))) = -34
((23)-(45)) = -14
((2(3-4))5) = -10
(2((3-4)5)) = -10
(((23)-4)*5) = 10
提示:
1 <= expression.length <= 20
expression 由数字和算符 ‘+’、‘-’ 和 ‘*’ 组成。
输入表达式中的所有整数值在范围 [0, 99]
解题思路:
divide & conquer.每次遇到一个符号就给符号两边加括号,两边各reduce一层,直到遇到base case (只有数字)停止。
例:1 + 2 + 3 -> (1) + (2 + 3),1和 (2 + 3) 分别reduce到base case, 再进行两个中间的运算。
算法时间复杂度的优化:
使用 HashMap 来保存已经计算过的情况,这样可以减少重复计算,从而提升运算速度,以空间换时间
代码实现:
public static List<Integer> diffWaysToCompute(String expression) {
List<Integer> res = new ArrayList<>();
boolean hasParentheses = false;
for (int i = 0; i < expression.length(); i++) {
char t = expression.charAt(i);
if (t == '*' || t == '+' || t == '-') {
hasParentheses = true;
List<Integer> left = diffWaysToCompute(expression.substring(0, i));
List<Integer> right = diffWaysToCompute(expression.substring(i + 1));
for (int l :
left) {
for (int re :
right) {
int c = 0;
switch (t) {
case '+':
c = l + re;
break;
case '-':
c = l - re;
break;
case '*':
c = l * re;
break;
}
res.add(c);
}
}
}
}
if(!hasParentheses) {
res.add(Integer.valueOf(expression));
}
return res;
}