Leetcode84 柱状图中最大的矩形

题目描述

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积
实例

解题思路

思路一:暴力寻找,从每个位置出发,向左右两边扩散查找,若发现柱形比当前位置高,则宽度加一,组成长方形,代码实现如下,但是提交之后发现在极端情况下会超时

public int largestRectangleArea(int[] heights) {
        int res = 0;
        for (int i = 0; i < heights.length; i++) {
            int height = heights[i], wid = 1;
            for (int j = i + 1; j < heights.length; j++) {
                if (heights[j] < height) break;
                else {
                    wid++;
                }
            }
            for (int j = i - 1; j >= 0; j--) {
                if (heights[j] < height) break;
                else {
                    wid++;
                }
            }
            res = Math.max(res, height * wid);
        }
        return res;
    }

算法优化

在暴力查询的基础上,研究发现,在某些情况下,可以前置信息来加速后续的查询,也就是说,可以使用动态规划来解题。使用zuo[i]数组表示从0到i,柱状图中以heights[i]为高的最大矩形宽度,从左向右遍历一次,使用you[i]数组表示从i到 len -1(终点位置),柱状图中以heights[i]为高的最大矩形宽度,再遍历一次。
注意!!,第二次遍历时,也就是从i到 len -1(终点位置),向右寻找柱状图中以heights[i]为高的最大矩形时,我们更新最大面积时记得加上前一次求出的左边宽度zuo[i]数

代码实现

class Solution {
    public int largestRectangleArea(int[] heights) {
       int res = heights[0];
        int[] zuo = new int[heights.length], you = new int[heights.length];
        zuo[0] = 1;
        you[heights.length - 1] = 1;
        for (int i = 1; i < heights.length; i++) {
            int height = heights[i], wid = 1;
            int j = i - 1;
            while (j >= 0) {
                if (heights[j] < height) {
                    break;
                } else {
                    wid += zuo[j];
                    j = j - zuo[j];
                }
            }
            zuo[i] = wid;
            res = Math.max(res, height * wid);
        }
        for (int i = heights.length - 2; i >= 0; i--) {
            int height = heights[i], wid = 1;
            int j = i + 1;
            while (j < heights.length) {
                if (heights[j] < height) break;
                else {
                    wid += you[j];
                    j = j + you[j];
                }
            }
            you[i] = wid;
            if (i > 0) wid = (wid + zuo[i] -1);
            res = Math.max(res, height * wid);
        }

        return res;
    }
}

算法效果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值