自由落体问题
题目:在高为H的天花板上有 n个小球,体积不计,位置分别为 0,1,2,⋯,n−1。在地面上有一个小车(长为 L,高为 KK,距原点距离为S1)。已知小球下落距离计算公式为 d=0.5g (t^2),其中 g=10,t 为下落时间。地面上的小车以速度V前进。
如下图:

小车与所有小球同时开始运动,当小球距小车的距离≤0.0001时,即认为小球被小车接受(小球落到地面后不能被接受)。
请你计算出小车能接受到多少个小球。
输入:H,S1,V,L,K,n(l≤H,S1,V,L,K,n≤100000)
输出:小车能接受到的小球个数。
解题思路:已知速度路程公式为:路程=速度*时间。先分别计算出计算出小球下落所需要的时间,然后用套用速度路程公式(假设距离原点近的为车头,距离原点远的为车尾),用S1+L小球下落时间内小车行驶的路程-0.0001可得小车尾部距离原点的距离s1,再然后用S1-小球下落时间内小车行驶的路程+0.0001可得小车头距离原点的距离s2。隐藏条件为一个位置下落所需时间为一秒即是距离一。由此可由for循环得出有几个小球在范围内。(也可转换成时间来做,但较为复杂)
注意:此题输入都为小数,在设定变量时应用double。此外还有一处需要注意,计算车头时小球的下落时间与计算车位时的下落时间是不同

该博客详细介绍了洛谷P1033题目,即在自由落体问题中,计算小车能够接收到多少个从天花板上掉落的小球。解题思路涉及物理公式结合编程逻辑,通过计算小球下落时间和小车行驶距离来确定接收范围。案例分析展示了具体输入输出,并提醒注意输入数值类型和车头车尾位置的计算差异。
最低0.47元/天 解锁文章
837

被折叠的 条评论
为什么被折叠?



