力扣1911. 最大子序列交替和

一个下标从 0 开始的数组的 交替和 定义为 偶数 下标处元素之 和 减去 奇数 下标处元素之 和 。

    比方说,数组 [4,2,5,3] 的交替和为 (4 + 5) - (2 + 3) = 4 。

给你一个数组 nums ,请你返回 nums 中任意子序列的 最大交替和 (子序列的下标 重新 从 0 开始编号)。

一个数组的 子序列 是从原数组中删除一些元素后(也可能一个也不删除)剩余元素不改变顺序组成的数组。比方说,[2,7,4] 是 [4,2,3,7,2,1,4] 的一个子序列(加粗元素),但是 [2,4,2] 不是。

示例 1:

输入:nums = [4,2,5,3]
输出:7
解释:最优子序列为 [4,2,5] ,交替和为 (4 + 5) - 2 = 7 。

示例 2:

输入:nums = [5,6,7,8]
输出:8
解释:最优子序列为 [8] ,交替和为 8 。

示例 3:

输入:nums = [6,2,1,2,4,5]
输出:10
解释:最优子序列为 [6,1,5] ,交替和为 (6 + 5) - 1 = 10 。

提示:

    1 <= nums.length <= 105
    1 <= nums[i] <= 105

这里尝试用贪心算法,代码很简洁

class Solution {
public:
    long long maxAlternatingSum(vector<int>& nums) {
        int n = nums.size();
        long long ans = nums[0];
        for(int i=1;i<n;++i){
            if(nums[i-1] < nums[i]){
                ans -= nums[i-1];
                ans += nums[i];
            }
        }
        return ans;
    }
};

首先假设ans为最优子数组,ans一定包含奇数个数,如果是偶数个,去掉最后一位会得到更优解

(偶数个数最后一位为奇数位)

对num[i]来说

1.如果num[i-1] > num[i]:

假设num[i]在ans中:

    如果num[i-1]在ans中,同时去掉num[i]和num[i-1]得更优解

    如果num[i-1]不在ans中,用num[i-1]替换num[i]得更优解

所以num[i]一定不在ans中;

2.同理,如果num[i-1] <= num[i]:

假设num[i]不在ans中:

    如果num[i-1]在ans中,用num[i]替换num[i-1]得更优解

    如果num[i-1]不在ans中,同时加上num[i]和num[i-1]得更优解

所以num[i]一定在ans中,同时对ans值的影响都是减num[i-1]再加num[i]

计算机201  LW

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值