【算法】Maximum Alternating Subsequence Sum 最大子序列交替和 动态规划

Maximum Alternating Subsequence Sum 最大子序列交替和

问题描述:

一个下标从 0 开始的数组的 交替和 定义为 偶数 下标处元素之 和 减去 奇数 下标处元素之 和 。

比方说,数组 [4,2,5,3] 的交替和为 (4 + 5) - (2 + 3) = 4 。
给你一个数组 nums ,请你返回 nums 中任意子序列的 最大交替和 (子序列的下标 重新 从 0 开始编号)。

一个数组的 子序列 是从原数组中删除一些元素后(也可能一个也不删除)剩余元素不改变顺序组成的数组。比方说,[2,7,4] 是 [4,2,3,7,2,1,4] 的一个子序列(加粗元素),但是 [2,4,2] 不是。

1 < = n u m s . l e n g t h < = 1 0 5 1 < = n u m s [ i ] < = 1 0 5 1 <= nums.length <= 10^5\\ 1 <= nums[i] <= 10^5 1<=nums.length<=1051<=nums[i]<=105

分析

要求在一个数组中找出一个subsequence,而且它的交替和最大。

要完成2个事情,子序列,交替和最大。

给的定义 交替和 alternating sum,是子序列中偶数下标的元素和 - 奇数下标的元素和
对于相同的元素a[i],它所处的不同的子序列,它的相对下标也可能会发生变化,可能是奇数,也可能是偶数。

这个问题其实和LIS很像,对于该问题的思路很多,子序列的长度,最小就是1,也就是单元素构造的子序列。
所以理论上,这个交替和的范围下边界就是单元素的最小值。
对于原数组的下标i,a[i]来讨论。

  • 情况1 a [ i ] a[i] a[i]可能自身就是一个备选。
  • 情况2 a [ i ] a[i] a[i]可能作为某个子序列的 o d d odd odd下标,即 0 → i − 1 0\rightarrow i-1 0i1存在一个even下标结尾的子序列的最大值。
  • 情况3 a [ i ] a[i] a[i]可能作为某个子序列的 e v e n even even下标,即 0 → i − 1 0\rightarrow i-1 0i1存在一个 o d d odd odd下标结尾的子序列的最大值。

所以状态转移方程就出来了。

f [ i ] [ j ] f[i][j] f[i][j]表示以i为结尾的元素构造的子序列,交替和可以得到的最大值,j为0表示当前元素是偶数结尾,1表示是奇数结尾。
f [ i ] [ 0 ] = m a x ( f [ k ] [ 1 ] + n u m s [ i − 1 ] ) , i > k > 0 f [ i ] [ 1 ] = m a x ( f [ k ] [ 0 ] − n u m s [ i − 1 ] ) , i > k > 0 f[i][0] = max(f[k][1]+ nums[i-1]), i>k>0\\ f[i][1] = max(f[k][0]- nums[i-1]), i>k>0 f[i][0]=max(f[k][1]+nums[i1]),i>k>0f[i][1]=max(f[k][0]nums[i1]),i>k>0

时间复杂度 O ( N 2 ) O(N^2) O(N2),TLE

由于最终只是计算结果,为了使 f [ i ] [ 0 ] f[i][0] f[i][0]最大,只是需要从 0 → i − 1 0\rightarrow i-1 0i1 找到一个以奇数结尾的最大交替和,所以不一定需要知道这个结果是哪个序列产生的。
所以使用一个 o d d odd odd来记录这个结果就可以,就可以避免进行一次 O ( N ) O(N) O(N)的遍历。

代码

DP

 public long maxAlternatingSum(int[] nums) {
        int n = nums.length;
        long[][] f = new long[n+1][2];
        long ans = 0;
        for(int i =1;i<=n;i++){
            f[i][0] = nums[i-1];
            f[i][1] = -nums[i-1];
            for(int j=i-1;j>0;j--){
                f[i][0] = Math.max(f[i][0],f[j][1]+nums[i-1]);
                f[i][1] = Math.max(f[i][1],f[j][0]-nums[i-1]);
            }
            ans = Math.max(ans,Math.max(f[i][0],f[i][1]));
        }
        return ans;
    }

时间复杂度 O ( ( N ) ) 2 ) O((N))^2) O((N))2)

空间复杂度 O ( N ) O(N) O(N)

TLE

改进

public long maxAlternatingSum(int[] nums) {
        int n = nums.length;
        long[][] f = new long[n+1][2];
        long ans = 0,max0 = 0, max1 = 0; 
        for(int i =1;i<=n;i++){
            f[i][0] = nums[i-1];
            f[i][1] = -nums[i-1];
            f[i][0] = Math.max(f[i][0],max1+nums[i-1]);
            f[i][1] = Math.max(f[i][1],max0-nums[i-1]);
            max1 = Math.max(max1,f[i][1]); 
            max0 = Math.max(max0,f[i][0]); 
            ans = Math.max(ans,Math.max(f[i][0],f[i][1]));
        }
        return ans;
    }

时间复杂度 O ( N ) O(N) O(N)

空间复杂度 O ( N ) O(N) O(N)

public long maxAlternatingSum(int[] nums) {
        int n = nums.length; 
        long ans = 0,even = 0, odd = 0;
        long cureven = 0, curodd = 0; 
        for(int i =1;i<=n;i++){
            cureven = nums[i-1];
            curodd = -nums[i-1];
            cureven = Math.max(cureven,odd+nums[i-1]);
            curodd = Math.max(curodd,even-nums[i-1]);
            odd = Math.max(odd,curodd); 
            even = Math.max(even,cureven); 
            ans = Math.max(ans,Math.max(cureven,curodd));
        }
        return ans;
    }

时间复杂度 O ( N ) O(N) O(N)

空间复杂度 O ( 1 ) O(1) O(1)

Tag

Array
Dynamic Programming

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eric.Cui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值