吐槽:week2主要是接着week1讲的,主要在于说明如何实现线性回归。因为都涉及公式复制不太好我就都用自己话说了。。还是一样的,有错评论一下,谢谢啦。
正文:
1,Multivariate Linear Regression(多元线性回归)
记号:n表示特征数量,x^(i)表示第i个训练样本(列向量 [x^(i)_(0); ...; x^(i)_(n)]),x^(i)_(j)表示第i个训练样本的第j个特征的值。
假设函数:h(x) = theta0*x0+theta1*x1+theta2*x2+...+thetan*xn,也就是thetaTx(特别的,x0=1;后面那个是theta的转置乘以x)
说明:x设为列向量 [x0; x1; ... ; xn],theta设为列向量 [theta0; ...; thetan];h(x)就是thetaTx。
代价函数什么的都和一元的情况差不多,就是一个推广,这里不详细说了。
梯度下降法的实用技巧1:特征缩放,为了让每个xj都近似在-1到1附近。
说明:-1到1附近不是绝对的,而是表示个数量级,-3到3也是可以的,但-0.00001到0.00001不行。
操作方法:每个xj都是原来的xj/range(或者xj是(xj-mean)/range),这样有利于快速收敛(比如x1房子面积是0-2000feet^2,x2房间个数是1-5,差距比较大,所以用x1/2000和x2/5来缩放,这样会导致J(theta)的等高线图偏向于是个圆形,而不是个椭圆,因此可以快速收敛)。
梯度下降法的实用技巧2:确定梯度下降法正确运行(要求是J(theta)在每一次迭代之后都应该下降)和学习率的选取(0.001->0.003->0.01->0.03->0.1->0.3->1,一般每次改变乘除3)。
说明:如果学习率过小,则收敛的很慢;过大则可能不在每次迭代后下降,或者不收敛。
多项式回归(polynomial regression):就是观察整个图形看

这篇博客介绍了多元线性回归的概念,包括假设函数和代价函数,并探讨了梯度下降法的特征缩放技巧。此外,文章详细讲解了正规方程法求解参数,并对比了梯度下降法。最后,提供了Octave/Matlab的使用教程,包括基本操作和绘制图形的示例。
最低0.47元/天 解锁文章
1590

被折叠的 条评论
为什么被折叠?



