【题解】编程作业ex3: Multi-class Classification and Neural Networks (Machine Learning)

9 篇文章 0 订阅
8 篇文章 0 订阅
本文提供了编程作业中关于多类别分类和神经网络问题的解题思路和代码实现,包括lrCostFunction、oneVsAll和predictOneVsAll函数。作者通过讨论每个函数的关键点,如逻辑回归的正则化、多分类问题的解决方法以及预测函数的实现,详细解释了算法的逻辑和代码结构。
摘要由CSDN通过智能技术生成

吐槽:有点点难,但可以推出的。。因为感觉都值得写所以就都写了,顺便说了说思路,如果有更好的思路也可以评论我hhh

题目:

Download the programming assignment here.

This ZIP file contains the instructions in a PDF and the starter code. You may use either MATLAB or Octave (>= 3.8.0). To submit this assignment, call the included submit function from MATLAB / Octave. You will need to enter the token provided on the right-hand side of this page.

lrCostFunction我的解法:

pdf在这里提示了两个点,一个是向量法的输出可以用size维度来检测其正确性,另一个是可以用theta(2:end)切片且用.^2来做element-wise的操作。我觉得需要注意的还是theta0是不需要lambda改变的,所以无论J还是grad都需要从theta1开始考虑,这个在代码里面也有hint。

function [J, grad] = lrCostFunction(theta, X, y, lambda)
%LRCOSTFUNCTION Compute cost and gradient for logistic regression with 
%regularization
%   J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
%   theta as the parameter for regularized logistic regression and the
%   gradient of the cost w.r.t. to the parameters. 

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0;
grad = zeros(size(theta));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
%               You should set J to the cost.
%               Compute the partial derivatives and set grad to the partial
%               derivatives of the cost w.r.t. each parameter in theta
%
% Hint: The computation of the cost function and gradients can be
%       efficiently vectorized. For example, consider the computation
%
%           sigmoid(X * theta)
%
%       Each row of the resulting matrix will contain the value of the
%       prediction for that example. You can make use of this to vectorize
%       the cost function and gradient computations. 
%
% Hint: When computing the gradient of the regularized cost function, 
%       there're many possible vectorized solutions, but one solution
%       looks like:
%           grad = (unregularized gradient for logistic regression)
%           temp = theta; 
%           temp(1) = 0;   % because we don't add anything for j = 0  
%           grad = grad + YOUR_CODE_HERE (using the temp variable)
%
h = sigmoid(X * theta);
J = 1/m * (-y'*log(h) - (1-y)'*log(1-h)) + lambda/(2*m) * sum(theta(2:end).^2);
grad = 1/m * X' * (sigmoid(X * theta) - y);
temp = theta;
temp(1) = 0;
grad = grad + lambda/m * temp;

% =============================================================

grad = grad(:);

end

oneVsAll我的解法:

这个函数本来我有点没理解,但是翻看了笔记里面对one-vs-all的定义,h^(i)(x)是对于第 i 个class概率,然后max(h^(i)(x))处 i 的取值即为分类结果,所以每个h(x)都有一组theta,i个h(x)有 i 组theta。而且代码中的注释里:ONEVSALL trains multiple logistic regression classifiers and returns all the classifiers in a matrix all_theta, where the i-th row of all_theta corresponds to the classifier for label i,意思就是第 i 组theta需要放在第 i 行all_theta里面,因此需要转置一下。而在pdf里面的tips的代码运行后发现返回的是个和 a 维度一样的只有0和1组成的代表真假的矩阵,所以y==c中的c也只是常数,不是一个向量。

function [all_theta] = oneVsAll(X, y, num_labels, lambda)
%ONEVSALL trains multiple logistic regression classifiers and returns all
%the classifiers in a matrix all_theta, where the i-th row of all_theta 
%corresponds to the classifier for label i
%   [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
%   logistic regression classifiers and returns each of these classifiers
%   in a matrix all_theta, where the i-th row of all_theta corresponds 
%   to the classifier for label i

% Some useful variables
m = size(X, 1);
n = size(X, 2);

% You need to return the following variables correctly 
all_theta = zeros(num_labels, n + 1);

% Add ones to the X data matrix
X = [ones(m, 1) X];

% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the following code to train num_labels
%               logistic regression classifiers with regularization
%               parameter lambda. 
%
% Hint: theta(:) will return a column vector.
%
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell you
%       whether the ground truth is true/false for this class.
%
% Note: For this assignment, we recommend using fmincg to optimize the cost
%       function. It is okay to use a for-loop (for c = 1:num_labels) to
%       loop over the different classes.
%
%       fmincg works similarly to fminunc, but is more efficient when we
%       are dealing with large number of parameters.
%
% Example Code for fmincg:
%
%     % Set Initial theta
%     initial_theta = zeros(n + 1, 1);
%     
%     % Set options for fminunc
%     options = optimset('GradObj', 'on', 'MaxIter', 50);

%     % Run fmincg to obtain the optimal theta
%     % This function will return theta and the cost 
%     [theta] = ...
%         fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
%                 initial_theta, options);
%
for c = 1:num_labels,
  % Set Initial theta
  initial_theta = zeros(n + 1, 1);
  
  % Set options for fminunc
  options = optimset('GradObj', 'on', 'MaxIter', 50);
  
  % Run fmincg to obtain the optimal theta
  % This function will return theta and the cost
  [theta] = fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), initial_theta, options);
  
  % Set theta to the c-th row in all_theta
  all_theta(c, :) = theta';
  
endfor

% =========================================================================

end
predictOneVsAll我的解法:

一开始觉得看这个描述似乎很复杂的样子,而且题目还提示说from 1 to num_labels,于是尝试了一下用for循环做这个,但是没有成功,感觉太过于繁琐了。然后又查了一下max(A, [], 2)这个语法的含义是取每一行的最大值(https://www.cnblogs.com/liuxjie/p/12024942.html),于是思路改变一下可能就是要求出某个矩阵然后求每一行的最大值,那么看一下维度,all_theta是 i * (n+1),X是 m * (n+1),而返回值 p 是 m*1 ,所以自然的可以知道中间矩阵A是 g(X*all_theta')。

function p = predictOneVsAll(all_theta, X)
%PREDICT Predict the label for a trained one-vs-all classifier. The labels 
%are in the range 1..K, where K = size(all_theta, 1). 
%  p = PREDICTONEVSALL(all_theta, X) will return a vector of predictions
%  for each example in the matrix X. Note that X contains the examples in
%  rows. all_theta is a matrix where the i-th row is a trained logistic
%  regression theta vector for the i-th class. You should set p to a vector
%  of values from 1..K (e.g., p = [1; 3; 1; 2] predicts classes 1, 3, 1, 2
%  for 4 examples) 

m = size(X, 1);
num_labels = size(all_theta, 1);

% You need to return the following variables correctly 
p = zeros(size(X, 1), 1);

% Add ones to the X data matrix
X = [ones(m, 1) X];

% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
%               your learned logistic regression parameters (one-vs-all).
%               You should set p to a vector of predictions (from 1 to
%               num_labels).
%
% Hint: This code can be done all vectorized using the max function.
%       In particular, the max function can also return the index of the 
%       max element, for more information see 'help max'. If your examples 
%       are in rows, then, you can use max(A, [], 2) to obtain the max 
%       for each row.
%       
A = sigmoid(X * all_theta');
[x, p] = max(A, [], 2);

% =========================================================================

end

predict我的解法:

分析一下维度发现就是这么做的=。=不过需要注意一下octave里面似乎不支持多维矩阵哎,所以得写成A1A2A3这种形式。。

function p = predict(Theta1, Theta2, X)
%PREDICT Predict the label of an input given a trained neural network
%   p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
%   trained weights of a neural network (Theta1, Theta2)

% Useful values
m = size(X, 1);
num_labels = size(Theta2, 1);

% You need to return the following variables correctly 
p = zeros(size(X, 1), 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
%               your learned neural network. You should set p to a 
%               vector containing labels between 1 to num_labels.
%
% Hint: The max function might come in useful. In particular, the max
%       function can also return the index of the max element, for more
%       information see 'help max'. If your examples are in rows, then, you
%       can use max(A, [], 2) to obtain the max for each row.
%

% Add ones to the X data matrix
X = [ones(m, 1) X];
A1 = X;
A2 = [ones(m, 1) sigmoid(A1 * Theta1')];
A3 = sigmoid(A2 * Theta2');
[x, p] = max(A3, [], 2);

% =========================================================================

end
 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值